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1 WAKES AND IMPEDANCES

A positively charged test particle at rest has static electric field going out radially in all directions. In
motion with velocity v, magnetic field is generated. As the particle velocity approaches c, the velocity of
light, the electric and magnetic fields are pancake-like, the electric field is radial and magnetic field azimuthal
(the Liénard-Wiechert fields). It is worth pointing out that no matter how far away, this pancake is always
perpendicular to the path of motion. In other words, the fields move with the test particle without any
lagging behind as illustrated in Fig. 1.

Figure 1: Schematic drawing of pan-cake electromagnetic fields emitted by an ultra-
relativistic particle traveling with velocity v. The pan-cake is always perpendicular to the
path of the particle and travels in pace with the particle no matter how far away the fields
are from the particle. There is no violation of causality because fields at points A and B

come from the particle at different locations. Fields from A are from A′ at a time AA′/v
ago, while fields at B from point B′, at a time AB′/v ago, where AA′ = BB′.

When placed inside a perfectly conducting beam pipe, the pancake of fields is trimmed by the beam
pipe. A ring of negative charges will be formed on the wall of the beam pipe where the electric field ends,
and these image charges will travel at the same pace as the particle, creating the so called image current. If
the wall of the beam pipe is not perfectly conducting or contains discontinuities, the movement of the image
charges will be slowed down, thus leaving electromagnetic fields behind. For example, when coming across a
cavity, the image current will flow into the wall of the cavity, creating fields trapped inside the cavity. These
fields left behind by the particle are called wake fields, which are important because they will influence the
motion of the particles that follow.

1.1 WAKE FUNCTIONS

Consider a test particle carrying charge q1 traveling with velocity v longitudinally along a designated
path in a beam pipe. A witness particle of charge q2 at a distance z behind sees a longitudinal force F ‖0 and
a transverse force F⊥0 due to the wake fields of the test particle. In general, these forces depend also on the
location s of the test particle along the beam pipe. However, when these forces are integrated over s for a
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Figure 2: Test particle with charge q1 at an offset of a1 from the designated path leaves
wake fields to the witness particle with charge q2 at an offset of a2 at a distance z behind.

long length ` of the beam pipe, they become functions of z only. For a circular machine, ` is taken as the
circumference C. The longitudinal wake function is defined as

W ′0(z) =
〈F ‖0 〉`
q1q2

, (1.1)

where 〈F ‖0 〉` denotes the longitudinal integrated wake force. As defined, W ′0(z) has the dimension of force-
length per charge square or Ohms/time.

If the path of the test particle is displaced transversely by a1 from the designated path, the witness
particle displaced by a2 at a distance z behind, as illustrated in Fig. 2, will see a longitudinal force F ‖1 and
a transverse force F⊥1 . The transverse wake function is defined by

W1(z) = lim
a1,a2→0

(〈F⊥1 〉 − 〈F⊥0 〉)`
a1q1q2

, (1.2)

which has the dimension of Ohms/(time-length).

Notice that when the designated particle path is the axis of symmetry of a cylindrical beam pipe, we
can expand everything into azimuthal harmonics m = 0, 1, 2, · · · . Then W ′0(z) is called the azimuthal
monopole (m = 0) longitudinal wake function. Also, the on-axis transverse force F⊥0 = 0, and W1(z) is
called the azimuthal dipole (m = 1) transverse wake function. Similar to Eq. (1.2), the longitudinal dipole
wake function can be defined as

W ′1(z) = lim
a1,a2→0

(〈F ‖1 〉 − 〈F
‖
0 〉)`

a1a2q1q2
, (1.3)

where a2 is the offset of the witness particle from the designated orbit.

As a result of the Panofsky-Wenzel theorem, for any azimuthal m 6= 0, the longitudinal wake function
W ′m(z) is the derivative of the transverse wake function Wm(z), which explains why a prime has been placed
in the longitudinal wake in Eq. (1.1). In our discussion below, we shall concentrate on only the lowest
azimuthal modes; i.e, W ′0 for the longitudinal and W1 for the transverse.

When the particle velocity v approaches the velocity of light, the wake functions have to obey the
causality condition that they vanish† when z < 0. This is the situation for most electron machines and
high-energy proton machines. For our discussions below, we will continue to use v instead of c in most
†Some authors prefer to define the wake function to be zero for z > 0 and nonzero otherwise.

2



places, because we would like to derive stability conditions and growth rates also for machines that are not
ultra-relativistic. However, strict causality will be imposed.

1.2 COUPLING IMPEDANCES

Beam particles form a current, of which the component with frequency ω/(2π) is I0(s, t) = Î0e
−iω(t−s/v),

where Î0 may be complex. This current component at location s and time t will be affected by the wake of
the preceding beam particles that pass the point s at time t−z/v with the charge element I0(s, t−z/v)dz/v.
The total voltage seen will be

V (s, t) =
∫ ∞
−∞

Î0e
−iω[t−(s+z)/v]W ′0(z)

dz

v
= I0(s, t)

∫ ∞
−∞

eiωz/vW ′0(z)
dz

v
. (1.4)

Thus we can identify the longitudinal coupling impedance of the vacuum chamber as

Z
‖
0 (ω) =

∫ ∞
−∞

eiωz/vW ′0(z)
dz

v
. (1.5)

Similarly, when the current is displaced transversely by a1, the transverse force, averaged over the ring
circumference C, acting on a current particle is obtained by summing the charge element I0(s, t−z/v)dz/v
passing s at time t−z/v,

〈F⊥1 (s, t)〉 =
q2a1

C

∫ ∞
−∞

Î0e
−iω[t−(s+z)/v]W1(z)

dz

v
=
q2a1

C
I0(s, t)

∫ ∞
−∞

eiωz/vW1(z)
dz

v
. (1.6)

We identify the transverse coupling impedance of the vacuum chamber as

Z⊥1 (ω) = − i
β

∫ ∞
−∞

eiωz/vW1(z)
dz

v
, (1.7)

where the −i takes into account the fact that the force lags the displacement by 1
2
π and the Lorentz factor

β = v/c is a convention. In both Eqs. (1.4) and (1.6), the lower limits of integration have been extended to
−∞, because the wake functions vanish when z < 0. From Eq. (1.6), it is evident that we can also compute
the transverse impedance by integrating the wake force averaged over one turn according to

Z⊥1 (ω) = − i

q2βI0a1

∫ C

0

〈F⊥1 〉 ds , (1.8)

where I0a1 represents the dipole current. Note that the longitudinal impedance is mostly the monopole
(m = 0) impedance and the transverse impedance is mostly the dipole (m = 1) impedance, if the beam pipe
cross section is close to circular and the particle path is close to the pipe axis. They have the dimensions of
Ohms and Ohms/length, respectively. The impedances have the following properties:

1. Z
‖
0 (−ω) = [Z‖0 (ω)]∗ , Z⊥1 (−ω) = −[Z⊥1 (ω)]∗ (1.9)

2. Z
‖
0 (ω) and Z⊥1 (ω) are analytic with poles only in the lower half ω-plane. (1.10)

3. Z‖m(ω) =
ω

v
Z⊥m(ω) , for cylindrical geometry and each azimuthal harmonic m 6= 0 . (1.11)

4. Re Z‖0 (ω) ≥ 0 , Re Z⊥1 (ω) ≥ 0 , when ω > 0 , (1.12)

5.
∫ ∞

0

dω ImZ⊥1 (ω) = 0 ,
∫ ∞

0

dω
ImZ

‖
0 (ω)
ω

= 0 , if the beam pipe has the same
entrance and exit cross section.

(1.13)
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The first follows because the wake functions are real, the second from the causality of the wake functions, and
the third from the Panofsky-Wenzel theorem [1] between transverse and longitudinal electromagnetic forces.
Re Z‖m(ω) ≥ 0 is the result of the fact that the total energy of a particle or a bunch cannot be increased
after passing through a section of the vacuum chamber where there is no accelerating external forces, while
Re Z⊥m(ω) ≥ 0 when ω > 0 follows from the Panofsky-Wenzel theorem. The fifth property follows from that
fact that W⊥1 (0) = 0.

For a pure resistance R, the longitudinal wake is W ′0(ω) = Rδ(z/v). At low frequencies, the wall of
the beam pipe is inductive. This wake function is W ′0(ω) = Lδ′(z/v), where L is the inductance. For a
nonrelativistic beam of radius a inside a circular beam pipe of radius b, the space-charge impedance is‡

Z
‖
0 = i

ω

ω0

Z0

2γ2β

(
1
2

+ 2 ln
b

a

)
, (1.14)

where Z0 ≈ 377 Ω is the impedance of free-space, ω0/(2π) is the revolution frequency of the beam particle
with Lorentz factors γ and β. Although this impedance is capacitive, however, it appears in the form of a
negative inductance. The corresponding wake function is

W ′0(z) = −δ′(z/v) ω
ω0

Z0

2γ2β

(
1
2

+ 2 ln
b

a

)
. (1.15)

An important impedance is that of a resonant cavity. Near the resonant frequency ωr/(2π), the longi-
tudinal and transverse impedances can be derived from a RLC-parallel circuit:

Z
‖
0 (ω) =

R0s

1 + iQ

(
ωr
ω
− ω

ωr

) , (1.16)

Z⊥1 (ω) =
c

ω

R1s

1 + iQ

(
ωr
ω
− ω

ωr

) . (1.17)

Another example is the longitudinal impedance for a length ` of the resistive beam pipe:

Z
‖
0 (ω) = [1− i sgn(ω)]

`

2πbσcδskin
, (1.18)

where b is the radius of the cylindrical beam pipe, σc the conductivity of the pipe wall,

δskin =

√
2c

Z0µrσc|ω|
, (1.19)

the skin depth at frequency ω/(2π), and µr the relative magnetic permeability of the pipe wall. The transverse
impedance is

Z⊥1 (ω) = [1− i sgn(ω)]
`c

πωb3σcδskin
, (1.20)

and is related to the longitudinal impedance by

Z⊥1 (ω) =
2c
b2ω

Z
‖
0 (ω) . (1.21)

‡Here the space-charge force seen by the the beam has been averaged over the cross section of the beam. If we consider

instead the force seen only by the beam particles at the beam axis, the first factor 1
2

in the bracket becomes 1.
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The above relation has been used very often to estimate the transverse impedance from the longitudinal.
However, we should be aware that this relation holds only for resistive impedances of a cylindrical beam pipe.
The monopole longitudinal impedance and the dipole transverse impedance belong to different azimuthals;
therefore they should not be related.

EXERCISES

1.1. Prove the properties of the impedances in Eqs. (1.9)-(1.12).

1.2. Using a RLC-parallel circuit, derive the longitudinal impedance in Eq. (1.16) by identifying R0s = R,
ωr = 1/

√
LC, and Q = R

√
C/L. Then show that the wake function is W ‖0 = 0 for z < 0, and for

z > 0,

W0(z) =
ωrRs
Q

e−αz/v
[
cos

ω̄z

v
− α

ω̄
sin

ω̄z

v

]
, (1.22)

with α = ωr/(2Q) and ω̄ =
√
ω2
r − α2.

1.3. Show that the wake functions corresponding to the longitudinal resistive wall impedance of Eq. (1.18)
and the transverse resistive wall impedance of Eq. (1.20) are, respectively,

W ′0(z) = − `

4πb|z|1/2

√
Z0µr
πσc

, (1.23)

W1(z) = − `

πb|z|3/2

√
Z0µr
πσc

. (1.24)

The above are only approximates and are valid for bχ1/3 � z � b/χ, where χ = 1/(bσcZ0).

2 LONGITUDINAL PHASE SPACE

2.1 EQUATIONS OF MOTION

To measure the charge distribution in a bunch, we choose a fixed reference point s0 along the ring
and put a detector there. A particle in a bunch is characterized longitudinally by τ , the time it arrives at
s0 ahead of the synchronous particle. We record the amount of charge arriving when the time advance is
between τ and τ +dτ . The result is eρ(τ)dτ , where ρ(τ) is a measure of the particle distribution and e is the
particle charge. The actual linear particle density per unit length is λ(τ) = ρ(τ)/v, where v is the velocity
of the synchronous particle. Note that this charge distribution is measured at a fixed point but at different
times. Therefore, it is not a periodic function of τ . In one turn, the change in time advance is

∆τ = −ηT0δ , (2.1)

where δ is the fractional momentum offset of the particle, T0 the revolution period of the synchronous
particle, and η the slip factor. The negative sign comes about because the period of a higher-momentum
particle is larger above transition (η > 0) and therefore its time of arrival slips. During that turn, the energy
gained by the particle relative to the synchronous particle is

∆E = eVrf(sinφ− sinφs) − (U − Us)− C(〈F ‖0 〉 − 〈F
‖
0s〉) , (2.2)
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where the subscript s stands for synchronous particle, and C is the ring circumference. The first term on
the right is the sinusoidal rf voltage and the second term is the radiation energy. The third is the wake force
defined in the previous section due to all beam particles ahead; it can therefore be written as

〈F ‖0 (τ)〉 =
e2

C

∫ ∞
0

dτ ′ρ(τ ′)W ′0(τ ′ − τ) . (2.3)

Notice that we have written, for convenience, the wake function as a function of time advance. The 〈F ‖0s〉 is
the wake force on the synchronous particle. It is a constant energy loss, which is compensated by suitably
choosing the synchronous phase φs.

The two equations of motion are related because the momentum spread is related to the energy spread
by δ = ∆E/(β2E0), and the rf phase seen is related to the time advance,

φ− φs = −hω0τ , (2.4)

where h is the rf harmonic, E0 and ω0/(2π) are the energy and revolution frequency of the synchronous
particle. The negative sign on the right-hand side of Eq. (2.4) comes about because when the particle arrives
earlier or τ > 0, it sees a rf phase earlier than the synchronous phase φs. To simplify the mathematics, a
continuous independent variable is needed instead of the discrete turn number. Time is not a good variable
here because it is complicated by synchrotron motion and the acceleration process. We choose instead s, the
distance along the closed orbit of the synchronous particle. With τ and ∆E as the canonical variables†, the
equations of motion for a particle in a small bunch become

dτ

ds
= − η

vβ2E0
∆E , (2.5)

d∆E
ds

= −ehω
2
0Vrf cos φs

2πv
τ − U − Us

C
− 〈F ‖0 〉 . (2.6)

If the radiation energy is neglected, the two equations of motion are derivable from the Hamiltonian

H = − η

2vβ2E0
(∆E)2 +

ehω2
0Vrf cosφs

4πv
τ2 + V (τ) , (2.7)

where

V (τ) =
e2

C

∫ τ

0

dτ ′′
∫ ∞
τ′′

dτ ′ρ(τ ′)W ′0(τ ′ − τ) . (2.8)

Substituting for the unperturbed small-amplitude synchrotron angular frequency

ω0s = ω0

√
−ηhVrf cos φs

2πβ2Es
, (2.9)

the Hamiltonian becomes

H = − η

2vβ2E0
(∆E)2 − ω2

0sβ
2E0

2ηv
τ2 + V (τ) . (2.10)

2.2 VLASOV EQUATION

We would like to describe the collective behavior of a multi-particle system under the influence of
electromagnetic forces. When collisions are neglected, the Vlasov equation or the Liouville theorem [2] is
†This set of canonical variables should not be used if the accelerator is ramping.
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the right candidate. It states that if we follow the motion of a representative particle in the longitudinal or
τ -∆E phase space, the density of particles in its neighborhood is constant. In other words, the distribution
of particles ψ(τ,∆E; s) moves in the longitudinal phase space like an incompressible fluid. Mathematically,
the Vlasov equation reads

dψ

ds
=
∂ψ

∂s
+
dτ

ds

∂ψ

∂τ
+
d∆E
ds

∂ψ

∂∆E
= 0 . (2.11)

In terms of the Hamiltonian, it becomes
∂ψ

∂s
+ [ψ,H] = 0 , (2.12)

where [, ] denotes the Poisson bracket.

EXERCISES

2.1. The Hamiltonian of Eq. (2.7) describes motion in the longitudinal phase space. Find the fixed points
of the Hamiltonian above and below transition, and determine whether they are stable or not. The
separatrices are the contours of fixed Hamiltonian values that pass through the unstable fixed points.
They separate the region of libration motion (oscillatory motion) from rotation motion. Plot the
separatrices.

2.2. The canonical variables τ0 and ∆E0 evaluated at ‘time’ s = 0 become τ1 and ∆E1 at an infinitesimal
time ∆s latter according to

τ1 = τ0 +
∂H

∂∆E
∆s , ∆E1 = ∆E0 −

∂H

∂τ
∆s . (2.13)

Consider the small phase-space area element dτ0d∆E0 = Jdτ1d∆E1. Show that the Jacobian J = 1 to
the first order of ∆s, implying that the area surrounding a given number of particles does not change
in time, which is Liouville Theorem. It is possible to prove J = 1 to all orders of ∆s using canonical
transformation. See, for example, H. Goldstein, Classical Mechanics, Addison-Wesley, Chapter 8-3.

3 POTENTIAL-WELL DISTORTION

A stationary bunch distribution ψ is time-independent. Therefore we expect [ψ,H] = 0, or ψ must be
a function of the Hamiltonian,

ψ = ψ(H) . (3.1)

For an electron bunch, because of the random quantum radiation and excitation, stationary distribution
should have a Gaussian distribution in ∆E, or

ψ(τ,∆E) =
1√

2πσ
E

exp
(
−∆E2

2σ2
E

)
ρ(τ) , (3.2)

where σE is the rms beam energy spread determined by synchrotron radiation. Noting Eq. (3.1), we must
have

ψ(τ,∆E) ∝ exp
(
vβ2E0

ησ2
E

H

)
. (3.3)

Integrating over ∆E, we finally arrive at an equation for the line density,

ρ(τ) = ρ(0) exp

[
−
(
ωsβ

2E0

ησE

)2
τ2

2
+
e2β2E0

ηT0σ2
E

∫ τ

0

dτ ′′
∫ ∞
τ′′

dτ ′ρ(τ ′)W ′0(τ ′ − τ)

]
. (3.4)
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This is called the Haissinski equation [3], where the constant ρ(0) is obtained by normalizing to the total
number of particles in the bunch: ∫

dτρ(τ) = N . (3.5)

The solution will give a line distribution that deviates from the Gaussian form, and we call this the potential-
well distortion. Since the rf voltage is modified, the synchrotron frequency also changes from ω0s/(2π) to
perturbed incoherent ωs/(2π) accordingly.

For a purely resistive impedance Z‖0 (ω) = Rs, W ′0(z) = Rsδ(z/v), the equation can be solved analyti-
cally giving the solution [4]

ρ(τ) =

√
2/πe−τ

2/(2σ2
τ)

α
R
στ{coth(α

R
N/2)− erf [τ/(

√
2στ )]}

, (3.6)

where στ = |η|σ
E
/(β2ωsE0). α

R
= e2β2E0Rs/(ηT0σ

2
E

), and erf(x) = (2/
√
π)
∫ x

0
e−t

2
dt is the error function.

For a weak beam with |α
R
|N . 1, the peak beam density occurs at

τ =
αRN√

2π
στ . (3.7)

This peak moves forward above transition and backward below transition as the beam intensity increases.
This effect comes from the parasitic loss of the beam.

When the longitudinal impedance is purely inductive, W ′0(z) = Lδ′(z/v), the Haissinski equation
becomes

ρ(τ) = ke−τ
2/(2σ2

τ)−α
L
ρ(τ) , (3.8)

where k is a positive constant and αL = e2β2E0L/(ηT0σ
2
E

). Thus, ρeαLρ is an even function of τ , and it
appears that the distorted distribution ρ is also an even function of τ . The line distribution will be left-right
symmetric. Thus, the reactive part of the impedance will either lengthen or shorten the bunch, while the
resistive part will cause the bunch to lean forward or backward. When |αL|N . 1, we can iterate,

ρ ≈ ke−τ
2/(2σ2

τ )
(

1− kαLe−τ
2/(2σ2

τ)
)
. (3.9)

Thus for α
L
> 0 the effective rms bunch length will be larger than στ . This is the situation of either a

repulsive inductive impedance force above transition or a repulsive capacitive force (L < 0) below transition.
On the other hand, for an attractive inductive force below transition or an attractive capacitive force above
transition, αL < 0 and the bunch will be shortened.

An easier way to compute the bunch length distorted by the reactive impedance is to consider the
elliptic phase space distribution

ψ(τ,∆E) =
3N |η|√κ

2πβ2ωsE0τ̂3
0

√
τ̂2
0 −

(
η

β2ωsE0

)2

∆E2 − κτ2 . (3.10)

This distribution has a constant maximum energy spread of

∆̂E =
β2ωsE0τ̂0
|η| , (3.11)
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which is determined by synchrotron radiation, while the half width of the bunch

τ̂ =
τ̂0√
κ

(3.12)

is determined by the parameter κ. This distribution when integrated over ∆E gives the normalized parabolic
line distribution

ρ(τ) =
3N
√
κ

4τ̂3
0

(
τ̂2
0 − κτ2

)
. (3.13)

With the reactive wake function W ′0(z) = Lδ′(z/v), the Hamiltonian of Eq. (2.7) can therefore be written as
a quadratic in ∆E and τ :

H = − η

2vβ2E0
(∆E)2 − ω2

sβ
2E0

2ηv
τ2 − e2L

C
ρ(τ) (3.14)

=
ω2
sβ

2E0

2ηv

[
−
(

η

β2ωsE0

)2

∆E2 − τ2(1−Dκ3/2)

]
, (3.15)

where

D =
3e2NηvL

2ω2
sβ

2E0Cτ̂3
0

. (3.16)

To be self-consistent, the expression of ψ in Eq. (3.10) must be a function of the Hamiltonian. Comparing
Eq. (3.10) with Eq. (3.15), we arrive at

κ = 1−Dκ3/2 (3.17)

or (
τ̂

τ̂0

)3

=
(
τ̂

τ̂0

)
+D . (3.18)

This cubic can be solved by iteration. First we put τ̂ /τ̂0 = 1 on the right side. If D > 0, we find τ̂ /τ̂0 > 1
or the bunch is lengthened. If D < 0, it is shortened. The former corresponds to either an inductive force
above transition or a capacitive force below transition. The latter corresponds to either an inductive force
below transition or a capacitive force above transition.

For a proton bunch, the energy spread is also modified but the bunch area remains constant. The
phase-space distribution has to be rewritten as

ψ(τ,∆E) =
3N |η|

2πβ2ωsE0τ̂
3
0

√
τ̂2
0 −

1
κ

(
η

β2ωsE0

)2

∆E2 − κτ2 . (3.19)

Now we have
τ̂ =

τ̂0√
κ

and ∆̂E =
√
κ∆̂E0 . (3.20)

Again comparing with the Hamiltonian, we arrive at the quartic equation(
τ̂

τ̂0

)4

= 1 +D

(
τ̂

τ̂0

)
. (3.21)

EXERCISES

3.1. Transform the Haissinski equation (3.4) according to the following:
(1) Notice that the integral over τ ′′ can be rewritten as∫ τ

0

dτ ′′ → −
∫ ∞
τ

dτ ′′ , (3.22)
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where the extra constant can be absorbed into the normalization constant ρ(0) which we rename by ξ.
(2) The integration in the τ ′-τ ′′ space is in the 0◦ to 45◦ quadrant between the lines τ ′′ = τ and
τ ′′ = τ ′. Translate the τ ′ and τ ′′ axes so that the region of integrated is now between the τ ′-axis and
the 45◦ line τ ′′ = τ ′.
(3) Integrate over τ ′′ first from 0 to τ ′; then integrate over τ ′.
(4) Change the variable τ ′′ to τ ′ + τ ′′. Now the Haissinisky equation takes the more convenient form

ρ(τ) = ξ exp

[
−
(
ωsβ

2E0

ησE

)2
τ2

2
− e2β2E0

ηT0σ2
E

∫ ∞
0

dτ ′ρ(τ+τ ′)
∫ τ′

0

dτ ′′W ′0(τ ′′)

]
. (3.23)

Notice that ρ(τ) on the left side only depends on the ρ on the right side evaluated in front of τ . We
can therefore solve for ρ at successive slides of the bunch by assigning zero to ρ at the very first slide
(the head) and some value to the constant ξ. The value of ξ is varied until the proper normalization
of ρ is obtained.

3.2. The bunch in the Fermilab Tevatron contains N = 2.7 × 1011 proton has a designed half length of
τ = 2.75 ns. The ring main radius is R = 1 km and the slip factor is η = 0.0028 at the incident
energy of E0 = 150 GeV. The rf harmonic is h = 1113 and the rf voltage is Vrf = 1.0 MV. Assume
a broad-band impedance centered at ωr/(2π) ≈ 3 GHz, quality factor Q = 1, and shunt impedance
Rs = 250 kΩ.

(a) Show that the frequencies that the bunch samples are much less than the resonant frequency of the
broad-band, so that the asymmetric beam distortion driven by Re Z‖0 can be neglected.

(b) Using only the inductive part of the impedance at low frequencies, compute from Eq. (3.21) the
equilibrium bunch length as a result of potential-well distortion.

(c) Electron bunches are usually very short. If an electron bunch of rms bunch length 2 cm is put
into the Tevatron, show that its spectrum will sample the resonant peak of Re Z‖0 and thus suffer
asymmetric distortion. Verify this by substituting the data into Eq. (3.6).

3.3. From Eq. (3.18) for an electron bunch, show that there are two solutions for the perturbed bunch length
due to distortion by a capacitive impedance when −2/33/2 < D < 0. Which one is physical? When
D < −2/33/2, there is no solution. At this critical situation, the bunch shortening ratio is 1/3−1/2.

4 LONGITUDINAL MICROWAVE INSTABILITY

The equation of motion for the longitudinal coordinate τ of a particle can be obtained from Eqs. (2.5)
and (2.6):

d2τ

ds2
+
ω2
s

v2
τ =

η

vβ2E0
〈F ‖0 (τ)〉 . (4.1)

For a reactive wake function W ′0(z) = Lδ′(z/v) , it reduces to

d2τ

ds2
+
ω2
s

v2
τ = − e2ηL

vβ2CE0
ρ′(τ) . (4.2)

For a rather long and uniform bunch, the slope of the linear distribution is mostly zero. Now suppose a
small bump appears in the linear density with distribution ρ(τ). The front of the bump has ρ′(τ) < 0 and
the rear ρ′(τ) > 0. For an inductive wake (L > 0) above transition (η > 0) or a capacitive wake below
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transition, particles at the front of the bump accelerate and those at the rear decelerate resulting in the
smoothing out of the bump. However, for an inductive wake below transition or a capacitive wake above
transition, particles at the front of the bump decelerate and those at the rear accelerate, thus enhancing
the bump. In other word, the situation is unstable against small nonuniformity in the linear distribution.
In order for the bump to grow, the growth rate must be faster than phase-drifting rate coming from the
momentum spread of the beam. This damping process is called Landau damping [5]. For a bunch, the
growth must be faster than synchrotron frequency otherwise the bump will be smeared out. Also since the
size of the bump must be less than the length of the bunch, the impedance driving the instability must have a
wavelength less than the length of the bunch. This growth at high frequencies is called microwave instability.

4.1 DISPERSION RELATION

For the dispersion relation governing microwave instability, we follow closely the derivation of Chao [6].
Consider a coasting beam, i.e., ωs = 0, with the unperturbed phase-space distribution

ψ0(∆E) =
N

T0
f0(∆E) , (4.3)

where f0(∆E) is normalized to unity when integrated over ∆E. Since the line distribution is uniform, it does
not depends on the location s along the ring. This stationary distribution is perturbed by an infinitesimal
longitudinal density wave which we postulate to have the ansatz

ψ1(s, t,∆E) = ψ̂1(∆E)eins/R−iΩt , (4.4)

where n is a nonzero integer, R the mean radius of the ring, and Ω/(2π) the collective frequency of oscillation
to be determined. When integrated over ∆E, we get the perturbation line density

ρ1(s, t) = ρ̂1e
ins/R−iΩt . (4.5)

A particle at position s and time t sees a wake force due to all beam particles that pass s at a time z/v
earlier. This force can be expressed as

〈F ‖0 (s, t)〉 =
e2

C

∫ ∞
0

dz

v
ρ1(s, t−z/v)W ′0(z) =

e2

C
ρ1(s, t)Z‖0 (Ω) , (4.6)

where Z‖0 (Ω) is the longitudinal impedance of the vacuum chamber evaluated at the collective frequency.
The particle energy will be perturbed according to the equation of motion

d∆E(s, t)
ds

= −e
2

C
Z
‖
0 (Ω)ρ̂1e

ins/R−iΩt . (4.7)

The energy change will induce a drift in the time advance

dτ(s, t)
ds

= −η∆E(s, t)
vβ2E0

. (4.8)

Note that for a particle, s = s0 + vt, where s0 is the particle location at t = 0. Eliminating t, the equations
can be integrated readily to give,

∆E(s, t) = −ie
2Z
‖
0 (Ω)
T0

ρ̂1e
ins/R−iΩt

Ω − nω0
, (4.9)

τ(s, t) = −e
2ηZ

‖
0 (Ω)

β2E0T0

ρ̂1e
ins/R−iΩt

(Ω− nω0)2
, (4.10)
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where we have retained only the modifications in ∆E(s, t) and τ(s, t) which reflect the presence of the
impedance. There is neglected in Eq. (4.9) a constant term which corresponds to the energy spread of the
particle in the absence of the impedance. Also neglected is a constant term in Eq. (4.10) that corresponds
to the time advance drift as a result of the unperturbed energy spread of the particle. Therefore, particles
at locations between s and s+ ds in the unperturbed beam ψ0 at time t are the same particles at locations
between s+vτ(s, t) and s+ds+vτ(s+ds, t) in the perturbed distribution ψ0 +ψ1 at time t. In other words,

ψ0(∆E)dsd∆E = [ψ0(∆E) + ψ1(s, t,∆E)]{[s+ ds+ vτ(s+ ds, t)]− [s+ vτ(s, t)]} . (4.11)

We get

ψ1(s, t,∆E) = −vψ0(∆E)
∂τ(s, t)
∂s

, (4.12)

=
ie2NvηnZ

‖
0 (Ω)

β2E0T
2
0

f0(∆E)
(Ω− nω0)2

ρ̂1e
ins/R−iΩt . (4.13)

Canceling the exponential on both side, we obtain

ψ̂1(∆E) =
ieI0ηnZ

‖
0 (Ω)ω2

0

2πβ2E0

f0(∆E)
(Ω− nω0)2

ρ̂1 , (4.14)

where I0 = eN/T0 is the average beam current. Recalling that ψ̂1(∆E) is normalized to ρ̂1 , integrating over
∆E on both side, we arrive at the dispersion relation

1 =
ieI0ηnZ

‖
0 (Ω)

2πβ2E0

∫
ω2f0(∆E)
(Ω− nω)2

d∆E , (4.15)

where ω has been used to denote the various revolution angular frequencies of the beam particles while ω0

has been reserved for the revolution angular frequency of the on-energy particle. An immediate conclusion
of Eq. (4.15) is that our ansatz for ψ1 in Eq. (4.4) is correct and the revolution harmonics are decoupled. If
there is no energy spread, the collective frequency can be solved easily. Above transition or η > 0,

Ω = nω0 +

√
eI0ηn

2πβ2E0

√
iReZ‖0 (Ω)− ImZ

‖
0 (Ω)ω0 , (4.16)

of which the positive imaginary part is the growth rate. We see that above transition there is no growth only
when Z‖0 is purely inductive, as postulated at the beginning of the discussion. For a low-energy machine, the
space-charge impedance per harmonic is frequency independent and rolls off only at very high frequencies.
Therefore above transition, the growth rate is directly proportional to n or frequency. This is the source of
negative-mass instability for a proton machine just above transition.

Now let us consider a realistic beam that has an energy spread. Since ω is a function of the energy
offset ∆E, define a revolution frequency distribution g0(ω) for the unperturbed beam such that

g0(ω)dω = f0(∆E)d∆E . (4.17)

Substituting into Eq. (4.14) and integrating by part, we obtain

1 = − ieI0ηZ
‖
0 (Ω)

2πβ2E0

∫
ω2g′0(ω)
Ω− nω dω . (4.18)
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Given the frequency distribution g0(ω) of the unperturbed beam and the impedance Z‖0 of the ring at roughly
nω0, the collective frequency can be solved from the dispersion equation. For a Gaussian distribution, the
integral is related to the complex error function, so that an analytic solution can be written down. For
other distributions, one has to resort to numerical method. For a given growth rate or ImΩ, we perform the
integral for various values of ReΩ and read off Re Z‖0 and ImZ

‖
0 from the dispersion equation. Thus, we can

plot a contour in the Re Z‖0 -ImZ
‖
0 plane corresponding to a certain growth rate. This plot for the Gaussian

distribution below transition is shown in Fig. 3. What are plotted is the real part U ′ and imaginary part V ′

of

U ′ + iV ′ =
eI0β

2(Z‖0 /n)
|η|E0(∆E/E)2

FWHM

(4.19)

at fixed growth rates. From outside to inside, the contours in the figure correspond to growth rates 0.5 to
−0.5 in steps of −0.1 in units of HWHM of the frequency spread, where negative values imply damping.

Figure 3: The growth contours for a Gaussian distribution in revolution frequency below
transition. The abscissa U ′ and ordinate V ′ are, respectively, real and imaginary parts
of eI0β2(Z‖0 /n)/[|η|E0(∆E/E)2

FWHM
]. From outside to inside, the contours correspond to

growth rates 0.5 to −0.5 in steps of −0.1 in units of HWHM of the frequency spread, where
negative values imply damping. The contour corresponding to the stability threshold is
drawn in dot-dashes and the area inside it is stable.
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Figure 4: The stability contours for different frequency distribution below transi-
tion. The abscissa U ′ and ordinate V ′ are, respectively, real and imaginary parts of
eI0β

2(Z‖0 /n)/[|η|E0(∆E/E)2
FWHM

]. From inside to outside, they correspond to unperturbed
revolution frequency distribution f(x) = 3

4(1−x2), 8
3π (1−x2)3/2, 15

16(1−x2)2, 315
32 (1−x2)4,

and 1√
2π
e−x

2/2. Note that all contours cut the V ′-axis at about −1.

The contour corresponding to the stability threshold is drawn in dot-dashes and the area inside it is stable.
Note that the positive V ′-axis is a cut and those damping contours continue into other Riemann sheets after
passing through the cut. Therefore, for each (U ′, V ′) outside the stability region bounded by the dot-dashed
curve, there can also be one or more stable solutions. However, since there is at least one unstable solution,
this outside region is termed unstable.

Obviously, these contours depend on the distribution g0(ω) assumed. In Fig. 4, we plot the stability
contours for various frequency distributions below transition. They are for frequency distributions, from
inside to outside, f(x) = 3

4 (1−x2), 8
3π (1−x2)3/2, 15

16(1−x2)2, 315
32 (1− x2)4, and 1√

2π
e−x

2/2. The innermost
one is the parabolic distribution with discontinuous density slopes at the edges and we see that the stability
contour curves towards the origin in the positive V ′ region. The contour next to it corresponds to continuous
density slopes at the edges and it does not dip downward in the positive V ′ region. As the edges become
smoother or with higher derivatives that are continuous, the contour shoots up higher in the upper half
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plane. For all distributions with a finite spread, the contours end with finite values at the positive V ′-axis.
For the Gaussian distribution which has infinite spread and continuous derivatives up to infinite orders, the
contour will only approach the positive V ′-axis without intersecting it.

We note in Fig. 4 that, regardless the form of distribution, all contours cut the negative V ′-axis at
∼ −1. Therefore, it is reasonable to approximate the stability region by a unit circle in the U ′-V ′ plane, so
that a stability criterion can be written analytically. This is the Keil-Schnell criterion which reads [7]∣∣∣∣∣Z‖0n

∣∣∣∣∣ < F
|η|E0

eI0β2

(
∆E
E0

)2

FWHM

, (4.20)

where F is a distribution-dependent form factor and is equal to the negative V ′-intersection of the contour.
For all the distributions discussed here, F ≈ 1. (See Exercise 4.1 below).

For a bunch beam, if the disturbance has a wavelength much less than the bunch length, we can view
the bunch locally as a coasting beam. Boussard suggested to apply the same Keil-Schnell stability criterion to
a bunch beam by replacing the coasting beam current I0 with the peak current Ipeak of the bunch. Krinsky
and Wang [8] performed a vigorous derivation of the microwave stability limit for a bunch beam with a
Gaussian energy spread and found the stability criterion∣∣∣∣∣Z‖0n

∣∣∣∣∣ < 2π|η|E0

eIpeakβ2

(
∆E
E0

)2

rms

. (4.21)

Comparing with Eq. (4.20), the Krinsky-Wang criterion corresponds to the Keil-Schnell criterion with a form
factor of π/(4 ln 2) = 1.133, which is exactly the negative V ′-intersect (see Exercise 4.1.)

4.2 LANDAU DAMPING

Keil-Schnell Criterion can be written as

nω0

√
e|η||Z‖0/n|I0

2πβ2E0
< nω0

√
F

2π
|η|∆E|FWHM

β2E0
. (4.22)

The left side is the growth rate as discussed in Eq. (4.16) with I0 replaced by Ipeak in the case of a bunch. The
right side can therefore be considered as the Landau damping rate coming from energy spread or frequency
spread. Stability is maintained if Landau damping is large enough. The theory of Landau damping is rather
profound, for example, the exchange of energy between particles and waves, the mechanism of damping, the
contour around the poles in Eq. (4.15), etc. The readers are referred to the papers by Landau and Jackson
[5, 9], and also a very well-written chapter in Chao’s book [6].

4.3 SELF-BUNCHING

Neglecting the effect of wake function, the Hamiltonian for particle motion can be written as

H = − η

2vβ2E0
(∆E)2 +

eVrf

2πvh
cos(hω0τ) , (4.23)

where the synchronous angle has been put to zero and the small-bunch approximation has been relaxed. It
is easy to see that the height of the bucket is

∆E|
bucket

=

√
eE0Vrf

πh|η| . (4.24)
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Keil-Schnell criterion can also be written as√
eE0I0|Z‖0 |
πn|η| <

√
F

πβ2
∆E|

FWHM
. (4.25)

Comparing with Eq. (4.24), the left side can be viewed as the height of a bucket created by an induced
voltage I0|Z‖0 | while the right side roughly the half full energy spread of the beam. This induced voltage will
bunch the beam just as an rf voltage does. If the self-bunched bucket height is less than the half full energy
spread of the beam, the bunching effect will not be visible and beam remains coasting. Otherwise, the beam
breaks up into bunchlets of harmonic n, and we call it unstable. This mechanism is known as self-bunching.

4.4 OVERSHOOT AND BUNCH LENGTHENING

When the current is above the microwave threshold, the self-bunching concept tells us that there will
be an increase in energy spread of the beam. The increase continues until it is large enough to stabilize the
beam again according to the Keil-Schnell criterion. For a proton beam, experimental observation indicates
that there will be an overshoot. Let (∆E)i be the initial energy spread which is below the threshold energy
spread (∆E)th postulated by the Keil-Schnell criterion. The final energy spread (∆E)f was found to be
given empirically by [10]

(∆E)i(∆E)f = (∆E)2
th . (4.26)

Thus the final energy spread is always larger than the threshold energy spread. An overshoot formula similar
to but not exactly the same as Eq. (4.26) has been derived by Chin and Yokoya [11].

For an electron bunch, because of the radiation damping, there is no overshooting observed. The bunch
length and energy spread as functions of average bunch current are plotted schematically in Fig. 5. When the
current is very small, the bunch length and energy spread correspond to their natural values as a result of the
radiation damping and the rf voltage. As the bunch current increases, the effect of potential-well distortion
is visible. The impedance of an electron ring is dominated by rf cavities. Since the electron bunch is much
shorter than the rf wavelength, it samples the capacitive part of cavity impedance. Therefore, the bunch
becomes shorter. Notice that the energy spread which is specified by radiation damping remains unchanged.
As the beam current exceeds the threshold for microwave instability, self-bunching occurs increasing the
energy spread to such a value that stability is again maintained. The bunch length also increases because of
synchrotron oscillation. The rms energy spread σE is related to the rms bunch length στ by

ωsστ = η
σE
β2E0

. (4.27)

From the Krinsky-Wang criterion of Eq. (4.21), we obtain the bunch length at the stability threshold,

στ =

(
e2Nηβ2

√
2πE0ω2

s

Z
‖
0

n

)1/3

. (4.28)

Therefore, the bunch length depends on only one parameter

ξ =
ηIb
ν2
sE0

, (4.29)

where Ib is the average beam current of the bunch and νs = ωs/ω0 is the synchrotron tune. This scaling law
was first derived by Chao and Gareyte [12] and has been verified experimentally. Using the concept of mode-
coupling, Chao and Gareyte derived a more general bunch length formula (see Section 9 on mode-coupling
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Figure 5: Both the bunch length and energy spread begin to grow after the bunch current
exceeds its microwave instability threshold Ith. (a) The bunch length starts with its natural
value at zero current and becomes shortened due to the capacitive potential-well distortion.
(b) Below the instability threshold, the energy spread is always at its natural value unaffected
by the effect of potential-well distortion.

below)
στ ∝ ξ1/(2+a) (4.30)

when the part of the impedance sampled by the bunch behaves like

Z
‖
0 ∝ ωa . (4.31)

The bunch length formula of Eq. (4.28) corresponds to a = 1, or a broad-band impedance at low frequency.
This will be the situation for a proton machine, where the impedance rolls off around or above the cutoff
frequency and the proton bunch has a length much longer than beam pipe radius and therefore samples the
impedance at frequencies well below cutoff. For an electron machine, the impedance which is dominated by
the rf cavities rolls off at much lower frequencies. The electron bunch which is usually short will therefore
samples the part of the impedance that is rolling off (a 6= 1). For this reason, it is doubtful whether the
Keil-Schnell or Krinsky-Wang criterion should apply to electron bunches. More about mode-coupling and
will be given in the last section.

4.5 OBSERVATION AND CURE

In order for a bunch to be microwave unstable, the growth rate has to be much faster than the syn-
chrotron frequency. For the Fermilab Main Ring, the synchrotron period was typically about 100 to 200
turns or 2 to 4 ms. A naive way is to observe the microwave growth is to view the spectrum of the bunch
over a large range of frequencies at a certain moment. However, the bunch spectrum produced by a network
analyzer is usually via a series of frequency filters of narrow width, starting from low frequencies and work-
ing its way towards high frequencies. This process is time consuming. As soon as the filtering reaches the
frequencies concerned, typically a few GHz, the microwave growth may have been stabilized already through
bunch dilution, and therefore no growth signals will be recorded. The correct way is to set the network
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analyzer at a narrow frequency span and look at the beam signal as a function of time. The frequency span
is next set to an adjacent frequency interval and the observation repeated until the frequency range of a few
GHz has been covered. Besides, we must make sure that the network analyzer is capable of covering the
high frequency of a few GHz for the microwave growth signals. Also the cable from the beam detector to
the network analyzer must be thick enough so that high-frequency attenuation is not a problem in signal
propagation.

Since microwave instability occurs so fast, it is not possible to use a damper system to cure it. One way
to prevent the instability is to blow up the bunch so that the energy spread is large enough to provide the
amount of Landau damping needed. Another way is to reduce the impedance budget of the ring by smoothing
out the beam pipe discontinuities. For negative-mass instability driven by the space-charge impedance just
after transition, one can try to modify the ramp curve so that transition can be crossed faster. Of course, a
γt-jump mechanism will be very helpful.

EXERCISES

4.1. The dispersion relation of Eq. (4.18) can be rewritten in a simpler form. let us measure revolution
angular frequency in terms of 2S, the FWHM spread, which is related to the FWHM energy spread by

2S = −ηω0
∆E
E0

∣∣∣∣
FWHM

. (4.32)

We can then introduce a dimensionless reduced angular frequency x such that

nω − nω0 = nxS and Ω − nω0 = nx1S , (4.33)

where we have used the fact the the collective angular frequency Ω in Eq. (4.16) is close to nω0. The
frequency distribution function g0(ω) is now transformed to a distribution f(x) which is normalized to
1 when integrated over x. We have

dg0(ω)
dω

dω =
d f(x)
dx

dx

dω
dx =

1
S

d f(x)
dx

dx . (4.34)

(a) Show that the dispersion relation (4.18) becomes

1 = − i2
π

(U ′ + iV ′)
∫

f ′(x)
x1 − x

dx , (4.35)

where U ′ and V ′ are defined in Eq. (4.19).

(b) When the beam current is just above threshold, the reduced collective angular frequency is written
as x1 = x1R − iε where x1R is real and ε is an infinitesimal positive number. Show that the stability
curve can be obtained from

1 = − i2
π

(U ′ + iV ′)
[
℘

∫
f ′(x)
x1R − x

dx+ iπf ′(x1R)
]
. (4.36)

by varying x1R , where ℘ denote the principal value of the of the integral.

(c) show that the negative V ′-intersect or the lowest point of the bell-shaped stability curve V ′in is given
by

1 = −2V ′in
π

℘

∫
f ′(x)
x

dx . (4.37)
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Table I: Form factors in the Keil-Schnell criterion for various distributions.

Frequency Distribution Form Factor

g0(ω) f(x) F Value

3
4ω̂

(
1− ω2

ω̂2

)
3
4a

(
1− x2

a2

)
a =
√

2
πa2

6
1.0472

8
3πω̂

(
1− ω2

ω̂2

)3/2 8
3a

(
1− x2

a2

)3/2

a =
1

1− 2−2/3

πa2

8
1.0613

15
16ω̂

(
1− ω2

ω̂2

)2 15
16a

(
1− x2

a2

)2

a =
1

1− 2−1/2

πa2

10
1.0726

315
256ω̂

(
1− ω2

ω̂2

)4 315
256a

(
1− x2

a2

)4

a =
1

1− 2−1/4

πa2

18
1.0970

1√
2πσ

exp
(
− ω2

2σ2

)
1√
2πa

exp
(
− ω2

2a2

)
a =

1√
2 ln 2

πa2

2
1.1331

In fact, the form factor in the Keil-Schnell criterion is given by F = |V ′in|.
(d) The form factor F ’s in the Keil Schnell criterion for various frequency distribution functions are
listed in Table I. Verify the results.

4.2. Using Eq. (4.36), plot the bell-shaped stability contours for the distributions listed in Table I as
illustrated in Fig. 4.

4.3. Using Eq. (4.35), show that the constant-growth contours for the Gaussian distribution are given by

1 =
i4 ln 2
π

(U ′ + iV ′) [1 + i
√
π ln 2 x1 w(

√
ln 2x1)] , (4.38)

where use has been made of the integral representation of the complex error function:

w(z) =
i

π

∫ ∞
−∞

e−t
2

z − tdt . (4.39)

Plot the contours in Fig. 3.

5 LONGITUDINAL COUPLED-BUNCH INSTABILITIES

When the wake does not decay within the bunch spacing, bunches talk to each other. Assuming M
bunches of equal intensity equally spaced in the ring, there are µ = 0, 1, · · · , M−1 modes of oscillations in
which the center-of-mass of a bunch leads† its predecessor by the phase 2πµ/M . In addition, an individual
†We can also formulate the problem by having the bunch lags its predecessor by the phase 2πµ′/M in the µ′-th coupling

mode. Then mode µ′ will be exactly the same as mode M−µ discussed in the text.
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bunch in the µ-th coupled-bunch mode can oscillate in the synchrotron phase space about its center-of-mass
in such a away that there are m = 1, 2, · · · azimuthal nodes in the perturbed longitudinal phase-space
distribution. Of course, there will be in addition radial modes of oscillation in the perturbed distribution.
The long-range wake can drive the coupled bunches to instability.

5.1 SACHERER INTEGRAL EQUATION

Because the beam particles execute synchrotron oscillations, it is more convenient to use circular coor-
dinates r, φ in the longitudinal phase space instead. We define x = r cosφ = τ ,

px = r sinφ =
η

ωsβ2

∆E
E0

,
(5.1)

so that the equations of motion become
dx

ds
= −ωs

v
px ,

dpx
ds

=
ωs
v
x− η

E0ωsβ2
〈F ‖0 (τ ; s)〉 .

(5.2)

The phase-space distribution ψ of a bunch can be separated into the unperturbed or stationary part ψ0 and
the perturbed part ψ1:

ψ(τ,∆E; s) = ψ0(τ,∆E) + ψ1(τ,∆E; s) . (5.3)

The linearized Vlasov equation becomes

∂ψ1

∂s
− ωs

v
px
∂ψ1

∂x
+
ωs
v
x
∂ψ1

∂px
− dψ0

dpx

η

E0ωsβ2
〈F ‖0 (τ ; s)〉 = 0 . (5.4)

Changing to the circular coordinates, the equation simplifies to

∂ψ1

∂s
+
ωs
v

∂ψ1

∂φ
− η

E0ωsβ2

dψ0

dr
sinφ〈F ‖0 (τ ; s)〉 = 0 . (5.5)

The perturbed distribution can be expanded azimuthally,

ψ1(r, φ; s) =
∑
m

αmRm(r)eimφ−iΩs/v , (5.6)

where Rm(r) are functions corresponding to the m-th azimuthal, αm are the expansion coefficients, and
Ω/(2π) is the collective frequency to be determined. The Vlasov equation becomes

(Ω−mωs)αmRm(r)e−iΩs/v =
ivη

E0ωsβ2

dψ0

dr

∫ π

−π

dφ

2π
e−imφ sinφ 〈F ‖0 (τ ; s)〉 . (5.7)

Now consider the wake force acting on a beam particle at location s with time advance τ relative to
the synchronous particle due to all preceding particles passing through s at an earlier time. This force can
be expressed as

〈F ‖0 (τ ; s)〉 =
e2

C

∞∑
k=−∞

∫ ∞
−∞

dτ ′ρ1[τ ′, s− kC − v(τ ′−τ)]W ′0[kC + v(τ ′−τ)] , (5.8)
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where only the perturbed density ρ1, which is the projection of ψ1 onto the τ axis, is included, because
the unperturbed part should have been considered in the zeroth order of the Vlasov equation during the
discussion of potential-well discussion. The summation over k takes care of the contribution of the wake left
by the charge distribution in previous turns. The lower limit of the summation and the lower limit of the
integral have been extended to −∞ because of the causality property of the wake function. Now there are
M bunches and the synchronous particle in the `-th bunch is at location s`. If the witness particle is in the
n-th bunch,

〈F ‖0n(τ ; s)〉 =
e2

C

∞∑
k=−∞

M−1∑
`=0

∫ ∞
−∞

dτ ′ρ`[τ ′; s− kC − (s`−sn)− v(τ ′−τ)]W ′0[kC + (s`−sn) + v(τ ′−τ)] . (5.9)

We assume the bunches are identical and equally spaced. For the µ-th coupled mode, we substitute in the
above expression the perturbed density of the n-th bunch ρ1n(τ)e−iΩs/v including the phase lead,

ρ`(τ ; s) = ρ1n(τ)ei2πµ(`−n)/Me−iΩs/v . (5.10)

Now go to the frequency domain using the Fourier transforms

W ′0(vτ) =
1

2π

∫ ∞
−∞

dω Z
‖
0 (ω)e−iωτ , (5.11)

ρ1n(τ ; s) =
∫ ∞
−∞

dω ρ̃1n(ω)eiωτ . (5.12)

In Eq. (5.9) above, we shall neglect‡ the time delay τ ′−τ because this will only amount to a phase
delay Ω(τ ′−τ) where Ω ≈ mωs, which is very much less than the phase change ωr(τ ′−τ) during the bunch
passage, where ωr/(2π) is the frequency of the driving resonant impedance. Substituting Eqs. (5.11) and
(5.12) into Eq. (5.9) and integrating over τ ′ and one of the ω’s, the wake force for the µ-th coupled-bunch
mode becomes

〈F ‖0nµ(τ ; s)〉 =
e2

C

∞∑
k=−∞

M−1∑
`=0

ei2πµ(`−n)/MeiΩ(−s+kC+s`−sn)/v

∫ ∞
−∞

dωρ̃1n(ω)Z‖0 (ω)e−iω(kC+s`−sn)/veiωτ .

(5.13)
Now the summation over k can be performed giving

〈F ‖0nµ(τ ; s)〉 =
e2

C

∞∑
p=−∞

M−1∑
`=0

ei2πµ(`−n)/Me−iΩs/v+iωpτω0ρ̃1n(ωp)Z‖0 (ωp)e−ipω0(s`−sn)/v , (5.14)

where ωp = pω0 + Ω. We next make use of the fact that the unperturbed bunches are equally spaced, or

s` − sn =
`− n
M

C . (5.15)

Then the summation over ` can be performed. The sum vanishes unless (p−µ)/M = q, where q is an integer.
The final result is

〈F ‖0nµ(τ ; s)〉 =
e2Mω0

C
e−iΩs/v

∞∑
q=−∞

ρ̃1n(ωq)Z
‖
0 (ωq)eiωqτ , (5.16)

‡Without this approximation, only Z
‖
0 will have the argument ωq in Eq. (5.16) below. The argument of ρ̃ and the factor in

front of τ in the exponent will be replaced by ωq−Ω.
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where ωq = (qM+µ)ω0 + Ω.

Since the left side of the Vlasov equation is expressed in terms of the radial function Rm(r), we want
to do the same for the wake force. First, rewrite the perturbed density in the time domain,

〈F ‖0nµ(τ ; s)〉 =
e2Mω0

C
e−iΩs/v

∞∑
q=−∞

Z
‖
0 (ωq)

∫
dτ ′ ρ1n(τ ′)eiωq(τ−τ′) . (5.17)

Since ρ1(τ ′) is the projection of the perturbed distribution onto the τ ′ axis, we must have

ρ1n(τ ′)dτ ′ =
∫
ψ1n(τ ′,∆E′)dτ ′d∆E′ (5.18)

=
E0ωsβ

2

η

∫
ψ1n(r′, φ′)r′dr′dφ′ (5.19)

=
E0ωsβ

2

η

∑
m′

αm′

∫
Rm′(r′)eim

′φ′r′dr′dφ′ . (5.20)

The wake force then takes the form

〈F ‖0n(τ ; s)〉 =
e2ω0M

2πC
E0ωsβ

2

η
e−iΩs/v

∞∑
q=−∞

∑
m′

Z
‖
0 (ωq)

∫
r′dr′dφ′Rm′(r′)eim

′φ′eiωq(τ−τ
′) , (5.21)

This wake force is next substituted into the Vlasov equation (5.7). The integrations over φ and φ′ are
performed in terms of Bessel function of order m using its integral definition

imJm(z) =
1

2π

∫ π

−π
dφ e±iφ+iz cosφ , (5.22)

the recurring relation

Jm−1(z) + Jm+1(z) =
2m
z
Jm(z) , (5.23)

and the fact that
Jm(−z) = (−1)mJm(z) . (5.24)

The result is the Sacherer integral equation for longitudinal instability for the m-th azimuthal µ-th coupled-
bunch mode,

(Ω−mωs)αmRm(r) =− i2πe
2MNη

β2E0T 2
0 ωs

m

r

dg0

dr

∑
m′

im−m
′
αm′

∫
r′dr′Rm′(r′)

∑
q

Z
‖
0 (ωq)
ωq

Jm′(ωqr′)Jm(ωqr) , (5.25)

where transformation of the unperturbed longitudinal distribution

ψ0(r)dτdδE =
ωsβ

2E0

η
ψ0dxdpx = Ng0(r)rdrdφ (5.26)

has been made so that g0 is normalized to unity when integrated over rdrdφ.

This is an eigen-function-eigen-value problem, the αm’s being the eigen-functions and Ω the corre-
sponding eigen-value. The solution is nontrivial. However, with some approximations, interesting results
can be deduced. When the perturbation is not too strong so that the shift in frequency is much less than
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the synchrotron frequency, there will not be coupling between different azimuthals. The integral equation
simplifies to

(Ω−mωs)Rm(r) = − i2πe
2MNη

β2E0T 2
0ωs

m

r

dg0

dr

∫
r′dr′Rm(r′)

∑
q

Z
‖
0 (ωq)
ωq

Jm(ωqr′)Jm(ωqr) . (5.27)

The spread in synchrotron frequency can be introduced by letting ωs be a function of r. Moving the factor
Ω − mωs(r) to the right side, the radial distribution Rm can be eliminated by multiplying both sides by
rJm(r) and integrating over dr. We then arrive at the dispersion relation,

1 = − i2πe
2MNmη

β2E0T 2
0ωs

∑
q

Z
‖
0 (ωq)
ωq

∫
dr
dg0

dr

J2
m(ωqr)

Ω−mωs(r)
. (5.28)

Stability and growth contours can be derived from the dispersion relation of Eq. (5.28) in just the same way
as in the discussion of microwave instability for a single bunch.

When the spread in synchrotron frequency is small, Eq. (5.28) gives the frequency shift

Ω−mωs =
i2πe2MNmη

β2E0T 2
0 ωs

∑
q

Z
‖
0 (ωq)
ωq

[
−
∫
dr
dg0

dr
J2
m(ωqr)

]
, (5.29)

where the expression inside the square brackets can be viewed as a distribution dependent form factor,
which is positive definite because dg0/dr is negative. Take the simple case of a single bunch of length 2τ̂ and
uniform distribution in the longitudinal phase space. Then

g0(r) =
1
πτ̂2

θ(τ̂ − r) , (5.30)

where θ(x) = 1 when x > 0 and zero otherwise. The form factor becomes

F =
1
πτ̂2

J2
m(ωq τ̂) ≈

ω2
q

4π
1

(m!)2

(
ωqτ̂

2

)2m−2

, (5.31)

where the assumption of a short bunch has been made in the last step. The growth rate driven by the
impedance can now be written as

1
τm

=
e2Nη

2β2E0T 2
0ωs

m

(m!)2

∑
q

(
ωqτ̂

2

)2m−2

ωqRe Z‖0 (ωq) , (5.32)

where, for one bunch, ωq = qω0 + Ω.

The m=0 mode is a trivial mode which gives Ω0 = 0. It describes the potential-well distortion mode
addressed in Section 3 and is of not much interest here where the emphasis is on instabilities. The next
azimuthal mode is m=1 which describes dipole oscillations and we expect Ω ≈ ωs. Consider the situation
of having the driving impedance as a resonance is so narrow that there is only one q > 0 that satisfies

ωr ≈ qω0 ± ωs , (5.33)

where ωr/(2π) is the resonant frequency. The growth rate can therefore be expressed as

1
τ1

= Im∆ωs =
ηe2Nωr

2β2E0T 2
0 ωs

[ReZ‖0 (qω0+ωs)−ReZ‖0 (qω0−ωs)] , (5.34)

23



Figure 6: (a) Above transition, if the resonant frequency ωr is slightly above a revolution
harmonic qω0, Re Z‖0 at the upper synchrotron side-band is larger than at the lower syn-
chrotron side-band. The system is unstable. (b) Above transition, if ωr is slightly below a
harmonic line, ReZ‖0 at the upper side-band is smaller than at the lower side-band, and the
system is stable.

where the first term corresponds to positive frequency and the second negative frequency. If the resonant
frequency is slightly above qω0 as illustrated in Fig. 6(a), we have Re Z‖0 (qω0 + ωs) > ReZ‖0 (qω0 − ωs).
Above transition, the growth rate will be positive or there is instability. On the other hand if ωr < qω0

as illustrated in Fig. 6(b), the growth rate is negative and the system is damped. This instability criterion
was first analyzed by Robinson [13]. Note that the growth rate of Eq. (5.34) is independent of the bunch
length when the bunch is short, implying that for the dipole mode, this is a point-bunch theory. More about
Robinson stability criterion will be discussed in Section 5.3.

For M equal bunches, Eq. (5.34) becomes, for coupled-bunch mode µ,

1
τ1µ

=
ηe2NMωr
2β2E0T 2

0 ωs
[ReZ‖0 (qMω0+µω0+ωs) −Re Z‖0 (q′Mω0−µω0−ωs)] . (5.35)

When µ = 0, both terms will contribute with q′ = q and we have exactly the same Robinson’s stability or
instability as for the single bunch situation. This is illustrated in Fig. 7. When µ = M/2 if M is even, both
terms will contribute with q′ = q, and the same Robinson’s stability or instability will apply. For the other
M−2 modes, only one term will be at or close to the resonant frequency and only one term will contribute.
If the positive-frequency term contributes, we have instability. If the negative-frequency term contributes,
we have damping instead. If one choose to speak in the language of only positive frequencies, there will
be an upper and lower synchrotron side-band surrounding each revolution harmonic. Above transition, the
coupled-bunch system will be unstable if the driving resonance leans towards the upper side-band and stable
if it leans towards the lower side-band.

For the higher azimuthal modes (m > 1) driven by a narrow resonance, we have the same Robinson
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Figure 7: Top plot shows the synchrotron lines for both positive and negative revolution
harmonics for the situation of M = 6 identical equally-spaced bunches. The coupled-bunch
modes µ = 0, 1, 2, 3, 4, 5 are listed at the top of the synchrotron lines. Lower plot shows
the negative-harmonic side folded onto the positive-harmonic side. We see upper and lower
side-band for each harmonic line.

instability. The growth rates are

1
τmµ

=
ηe2NMωr
2β2E0T 2

0 ωs

m

(m!)2

(
ωrτ̂

2

)2m−2

[ReZ‖0 (qMω0+µω0+ωs) −Re Z‖0 (q′Mω0−µω0−ωs)] , (5.36)

which depend on the bunch length as τ̂2m−2. As a result, higher azimuthal instabilities for short bunches
will be much more difficult to excite.

Landau damping can come from the spread of the synchrotron frequency. The spread due to the
nonlinear sinusoidal rf wave form can be written as

∆ωs
ωs

=
2
3

(
1 + sin2 φs

1− sin2 φs

)(
hτLf0

2

)2

, (5.37)

where τL is the total length of the bunch and φs is the synchronous angle. The mode will be stable if

1
τ
.

√
m

4
∆ωs . (5.38)

5.2 TIME DOMAIN

The longitudinal coupled-bunch instabilities can also be studied without going into the frequency do-
main. We are employing the same Vlasov equation in Eq. (5.7), but using the wake function of a resonance
in the time domain [14].

The wake function for a resonance with resonant frequency ωr/(2π), shunt impedance Rs and quality
factor Q was given in Eq. (1.22). For a narrow resonance with α = ωr/(2Q)� ωr, we can neglect the sine
term§ and simplify the wake function to

W ′0(z) =
ωrRs
Q

e−αz/v cos
ωrz

v
when z > 0 . (5.39)

§The sine term can be included at the expense of a slightly more complicated derivation.
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The wake force is then given by

〈F ‖0 (τ ; s)〉 =
e2ωrRs
QC

∫ ∞
τ

dτ ′ e−α(τ′−τ) cos[ωr(τ ′−τ)] ρ [τ ′; s− v(τ ′−τ)] . (5.40)

Now let ρ(τ ; s) represent the line density of the individual bunch, which has a phase lead of 2πµ/M for mode
µ compared with the preceding bunch τsep = T0/M ahead, and is influenced by all the preceding bunches.
The location argument s of ρ in Eq. (5.40) becomes¶ s − kτsep − v(τ ′−τ), with k = 0, 1, 2, · · · . For
simplicity, we neglect the time delay τ ′−τ . In the time variation e−iΩs/v where Ω ≈ mωs, this delay causes
a phase delay Ω(τ ′−τ) which is negligible in comparison with the phase change due to the resonator. We
will also neglect the variation in the attenuation factor over one bunch in e−α(τ′−τ). Then the wake force
exerted on a particle in the µ-th coupled-bunch mode can be written as

〈F ‖0µ(τ ; s)〉 =
e2ωrRs
QC

∞∑
k=0

e2πikµ/M−kατsep

∫
one bunch

dτ ′ cos[ωr(τ ′−τ)+kτsep ] ρ1(τ ′)e−iΩ(s/v−kτsep) . (5.41)

It is worth pointing out that the lower limits of the summation and integration cannot be extended to −∞
as before, because the explicit expression of the wake function has been used. Note that only the perturbed
line density ρ1 is included. This is because the unperturbed part ρ0 should have been taken care of in
the potential-well distortion consideration. Changing the integration variables from (τ,∆E) to (r, φ) while
keeping only the azimuthal m,

ρ1(τ ′)dτ ′ = αmRm(r′)eimφ
′
dτ ′d∆E′ =

E0ωsβ
2

η
αmRm(r′)eimφ

′
r′dr′dφ′ . (5.42)

Substituting the wake force into Eq. (5.7), we arrive at

(Ω−mωs)Rm(r) =
ie2NηωrRs

2πβ2E0QT0ωs

dg0

dr

∞∑
k=0

e2πikµ/M−k(α−iΩ)τsep ×

×
∫ ∞

0

r′dr′Rm(r′)
∫ π

−π
dφ e−imφ sinφ

∫ π

−π
dφ′eimφ

′
cos[ωr(r′ cosφ′−r cos φ)+kτsep] , (5.43)

where again we have used the unperturbed distribution g0(r) given by Eq.(5.26) which is normalized to unity.
The result is

(Ω −mωs)Rm(r) = −2πe2NRsmη

β2E0QT0ωs

dg0

dr
×

×
∞∑
k=0

e2πikµ/M−k(α−iΩ)τsep sin(kωrτsep)
∫ ∞

0

dr′Rm(r′)
r′Jm(ωrr′)Jm(ωrr)

r
. (5.44)

Finally, we introduce Landau damping by allowing the synchrotron frequency to be a function of the radial
distance from the center of the bunch in the longitudinal phase phase. Moving Ω−mωs(r) to the right side
and performing an integration over rdr, we can eliminate Rm and obtain the dispersion relation

1 = −i2πe
2NRsmMη

β2E0ωsωrT 2
0

D(ατsep)
∫ ∞

0

dr
dg0

dr

J2
m(ωrr)

Ω−mωs(r)
, (5.45)

where we have defined the function‖

D(ατsep) = −i2ατsep

∞∑
k=0

e2πikµ/M−k(α−iΩ)τsep sin kωrτsep , (5.46)

¶Here we include the term kτsep which Sacherer had left out. This term is important to exhibit Robinson’s criterion of phase

stability.
‖We would like D = ±1 when the resonance is at the upper/lower side-band. As a result, our definition of D differs from

Sacherer’s by a phase.
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which contains all the information about the quality factor of the resonance and its location with respect
to the revolution harmonics. It is interesting to note that Eq. (5.45) closely resembles Eq. (5.28). It will
be shown below that D = 1 for a narrow resonance with the resonant peak located at (qM+µ)ω0 +mωs.
Thus the two dispersion relations are identical. In fact, they are the same even when the resonant peak is
not exactly located at a synchrotron line.

Now let us study the function D(ατsep). Noting that the bunch separation is τsep = T0/M , this function
can be rewritten as

D(ατsep) = ατsep

(
1

1−ex+
− 1

1−ex−

)
, (5.47)

where

x± =
2πi
M

(
q±M + µ+m

ωs
ω0
∓ ωr
ω0

)
− ατsep . (5.48)

The q±M term comes about because we can replace µ in Eq. (5.46) by q±M+µ, where q± are positive/negative
integers and µ = 0, 1, · · · , M−1. When the resonance is extremely narrow, we have ατsep = ωrτsep/(2Q)�
1. The two terms in Eq. (5.47) almost cancel each other so that D(ατsep) ≈ 0 unless ωr ≈ (|q±|M±µ)ω0.
For modes µ 6= 0 and µ 6= 1

2
M if M is even, only one of the two terms in Eq. (5.47) contributes. If

ωr ≈ (|q±|±µ)ω0±mωs, we have |x+| � 1 or |x−| � 1 and

D(ατsep) ≈ ∓ατsep

x±
=

−iωr/(2Q)
ωr − [(|q±|M±µ)ω0±mωs]∓ iωr/(2Q)

≈ ±1 . (5.49)

When µ = 0 or µ = M/2 if M is even, it is possible to choose q+ and q− so that both terms will contribute.
We have

D ≈ −iωr/(2Q)
ωr − [(q+M+µ)ω0 +mωs]− iωr/(2Q)

+
−iωr/(2Q)

ωr − [(|q−|M−µ)ω0−mωs] + iωr/(2Q)
, (5.50)

where q+ = |q−| for µ = 0 and |q−| = q+ +1 for µ = M/2. Note that Eq. (5.50) is just proportional to
[Z‖0 (q+Mω0+µω0+mωs+iα)−Z‖0 (|q−|Mω0−µω0−mωs−iα)], and we recover the Robinson’s stability criterion
derived in Eq. (5.35).

On the other hand, when the resonance is broad, ατsep � 1. The k = 1 in Eq. (5.46) dominates since
k = 0 does not contribute and we have instead

D(ατsep) ≈ −i2ατsep sin(ωrτsep)e2πiµ/M−ατsep . (5.51)

Therefore coupled-bunch modes near µ = ±1
4M are most strongly excited, although |D| will be much less

than unity. Figure 8 plots |D| versus ωr/ω0 for the situation of M=10 bunches. The solid lines show |D| ≈ 1
for narrow resonance. The dotted curve are for broad-band resonance when the bunch to bunch attenuation
decrement is ατsep = 4; the values of |D| are small and appear to be mode-independent. The dashed curves
correspond the intermediate case with bunch-to-bunch attenuation decrement ατsep = 1. From left to right,
they are for modes µ = 0, 1 and 9, 2 and 8, 3 and 7, 4 and 6, 5. We see that |D|max is roughly the same for
each mode. Note that ατsep = 1 translates into (∆ωr/ω0)FWHM = M/π = 3.2 or the resonance covers more
than 3 revolutionary harmonics. It is demonstrated in the figure that all modes will not be excited if the
ωr/ω0 falls exactly on qM or q(1

2
M) if M is even. This is because in drawing the plot, the limit ωs → 0 has

been taken. Figures 9 plots |D|max versus the bunch-to-bunch decrement ατsep, showing that it is less than
5% from unity when ατsep < 0.55.

In the event that the spread in synchrotron frequency is small, we can obtain from Eq. (5.45) the
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Figure 8: |D| as functions of resonant harmonic ωr/ω0 for M = 10 bunches when bunch-
to-bunch decay decrement ατsep � 1 for narrow-band resonance (solid), ατsep = 4 for
broad-band resonance (dots), and ατsep = 1 for resonance in between (dashes). The dashed
curves from left to right represent coupled-bunch modes µ = 0, 1 and 9, 2 and 8, 3 and 7,
4 and 6, 5. The excitations at ωr/ω0 = 0, or M/2 is always zero, because we have set the
synchrotron frequency to zero in the plot.

synchrotron frequency shift

Ω−mωs = − i2πe
2NRsmMη

β2E0ωsωrT 2
0

D(ατsep)
∫ ∞

0

dr
dg0

dr
J2
m(ωrr) , (5.52)

where the integral can be viewed as a form factor which is distribution dependent. A form factor

Fm(∆φ) = −4πmτ̂
ωr

∫ ∞
0

dr
dg0

dr
J2
m(ωrr) (5.53)

can now be defined for each azimuthal, where τ̂ is the half bunch length and ∆φ = 2ωrτ̂ is the change in
phase of the resonator during the passage of the whole bunch. Then the frequency shift can be rewritten as

Ω−mωs =
iηe2NMRs

4πβ2E0νsT0τ̂
D(ατ0)Fm(∆φ) , (5.54)

where νs = ωs/ω0 is the synchrotron tune.

We take as an example the parabolic distribution in the longitudinal phase space,∗∗ which implies

g0(r) =
2
πτ̂4

(τ̂2 − r2) and
dg0

dr
= − 4r

πτ̂4
. (5.55)

The form factor is

Fm(∆φ) =
32m
∆φ

∫ 1

0

J2
m(1

2∆φx)xdx

=
16m
∆φ

[
J2
m(1

2
∆φ)− Jm+1(1

2
∆φ)Jm−1(1

2
∆φ)

]
,

(5.56)
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Figure 9: |D|max as a function of bunch-to-bunch decay decrement ατsep. Note that |D|max ≈
1 for narrow resonances but drops very rapidly as the resonance becomes broader.

which is plotted in Fig. 10 for m = 1 to 6. The form factor specifies the efficiency with which the resonator
can drive a given mode. We see that the maximum value of F1 for the dipole mode occurs when ∆φ ≈ π.
This is to be expected because the head and tail of the bunch will be driven in opposite directions. Similarly,
the quadrupole or breathing mode is most efficiently driven when ∆φ ≈ 2π, and so on for the higher modes.
In general, mode m is most efficiently driven when the resonator frequency is ∆φ ≈mπ. Note also that the
maximum value of Fm drops faster than m−1/2, implying that higher azimuthal modes are harder to excite.

For small ∆φ, F1 ≈ 1
2∆φ. From Eq. (5.52), the growth rate for the dipole mode above transition can

be written as
ηe2NMRsωr
2β2E0ωsT 2

0

, (5.57)

which agrees with the expression in Eq. (5.35) derived for small bunches.

5.3 RF DETUNING AND ROBINSON’S STABILITY CRITERIA

The rf cavity has a loaded shunt impedance Rs, a loaded quality factor QL , and resonates at frequency
ωr/(2π). Corresponding to a beam particle revolving with frequency ω0/(2π), the rf frequency is ωrf/(2π) =
hω0/(2π), where h is the rf harmonic. The impedance of the cavity seen by the particle at ωrf/(2π) can be
written approximately as

Zcav =
Rs

1− jQL
(
ωr
ωrf
−ωrf

ωr

) ≈ Rs cosψ ejψ , (5.58)

where ψ is the rf detuning angle, which is defined as

tanψ = 2QL
ωr−ωrf

ωr
. (5.59)

Note that in this section we have used j instead of −i, because phasor diagrams are customerly drawn using
this convention. The detuning, which implies ψ 6= 0, is necessary because (1) we want the load to appear
∗∗This is different from the so-called parabolic distribution, which is actually parabolic line density.
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Figure 10: Form factor for longitudinal oscillation inside a bunch with m = 1, 2, 3, 4, 5
and 6 nodes. The unperturbed parabolic distribution in the longitudinal phase space is
assumed.

real to the generator (the generator current ig in phase with the cavity gap voltage Vrf) so that there will
not be any power reflection to the generator, and (2) both the generator voltage Vg and the beam-loading
voltage Vim contribute to the cavity gap voltage. This is illustrated in the phasor diagram in Fig. 11, where
the tilde represents a phasor rotating counter-clockwise with angular frequency ωrf . Here, we assume most
of the transient beam-loading has been cancelled; therefore, the image current phasor ĩim has a magnitude
much smaller than that of the beam current phasor ĩb. According to Eq. (5.58), we see from Fig. 11 that
both the beam-loading voltage phasor Ṽim and the generator voltage phasor Ṽg are at a phase ψ ahead of
their respective current phasors ĩim and ĩg . Since these two voltage phasors add up to give the gap voltage
phasor Ṽrf which has a synchronous angle φs, we must have after dividing by Rs cos φ,

ig sinψ = iim sin(π2 − φs + ψ) . (5.60)

Resolving the current contributions along ĩg , we have

ig = i0 + iim sinφs , (5.61)

where i0 = Vrf/Rs is the total current in phase with the cavity gap voltage. Eliminating ig , we arrive at

tanψ =
im cosφs

i0
. (5.62)

Now let us study the conditions for phase stability. Suppose that the beam particle has a slightly
larger energy than the synchronous particle. After a revolution or h rf periods, ĩb in Fig. 11 will be ahead
of the x-axis by a small angle ε > 0 if it is below transition. Then the accelerating voltage it sees will be
Vrf sin(φs−ε) instead of Vrf sinφs, or an extra decelerating voltage of εVrf cos φs, and it receives less energy
from the cavity than the synchronous particle. The motion is therefore stable. Therefore to establish stable
phase oscillation when beam loading can be neglected, one requires{

0 < φs <
π
2

below transition,
π
2 < φs < π above transition.

(5.63)
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Ṽim

ĩg

ĩb

ψ

ψ

φs

Figure 11: Phasor plot showing the vector addition of the generator voltage phasor Ṽg and
the beam-loading voltage phasor Ṽim to give the gap voltage phasor Ṽrf in a rf cavity. Note
the detuning angle ψ which put the gap current phasor ĩg in phase with the gap voltage
phasor.

From Eqs. (5.59) and (5.62), this translates into{
tanψ > 0 or ωr > ωrf below transition,
tanψ < 0 or ωr < ωrf above transition,

(5.64)

which is just Robinson’s criterion [13] for phase stability discussed in the previous subsection.

When beam loading is included, the gap voltage phasor Ṽrf will be modified also, because the image
current phasor ĩim and hence the beam-loading voltage phasor Ṽim also advance by the small angle ε after h
rf periods. The extra beam-loading voltage phasor is εiimRs cosψ ej(ψ+3π/2). If ψ < 0, this phasor will point
into the 3rd quadrant and decelerate the particle in concert with εVrf cos φs, causing no instability. On the
other hand, if ψ > 0, this phasor will point into the 4th quadrant and accelerate the particle instead. To
be stable, the extra accelerating voltage on the beam must be less than the amount of decelerating voltage
εVrf cosφs, or

iim
i0

<
cos φs

sinψ cosψ

{
ψ > 0 below transition,

ψ < 0 above transition,
(5.65)

which is called Robinson’s high-intensity criterion for phase stability. Satisfying this criterion just enables
stable oscillating like sitting inside a stable potential well and there will not be any damping. Violating this
criterion will place the particle in an unstable potential well so that phase oscillation will not be possible.

EXERCISES

5.1. Above/below transition with the resonant frequency offset by ∆ω = ±(ωr−hω0), the bunch suffers
Robinson’s instability. Assuming that both ωs and |∆ω| are much less than the resonator width
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ωr/(2Q) which, in turn, is much less than ω0, and using the expression for resonant impedance in
Eq. (1.16), show that the Robinson growth rate in Eq. (5.34) can be written as

1
τ

=
4e2NRsQ

2η∆ω
πβ2E0hT0

. (5.66)

Robinson’s instability is usually more pronounced in electron than proton machines because high shunt
impedance and quality factor are often used in the rf system. Take for example a ring of circumference
180 m with slip factor |η| = 0.03. To store a typical bunch with 1 × 1011 electrons at E0 = 1 GeV,
one may need a rf system with h = 240, Rs = 1.0 MΩ, and Q = 2000. On the other hand, to store
a bunch of 1 × 1011 protons at E0 = 1 GeV in the same ring, one may need a rf system with h = 4,
Rs = 0.12 MΩ, and Q = 45. Compare the Robinson growth rates for the two situations when the
resonant frequencies are offset in the wrong directions by |∆ω| = ωs. Assume the synchrotron tune to
be 0.01 in both cases.

5.2. In Section 5.3, rf-detuning and Robinson’s stability condition have been worked out below transition.
Show that above transition the detuning according the Fig. 11 leads to instability. Draw a new phasor
diagram for the situation above transition with stable rf-detuning. Rederive Robinson’s high-intensity
stability criterion above transition.

5.3. Derive all the expressions in the Section 5.2 on Sacherer’s approach to coupled-bunch growth rate
driven by a resonance.

5.4. Using the definition of the form factor in Eq. (5.53), compute numerically the form factor when the
unperturbed distribution is bi-Gaussian. The half bunch length can be taken as τ̂ =

√
6στ , where στ

is the rms bunch length.

6 TRANSVERSE INSTABILITIES

Consider a coasting beam of current I0. A particle inside oscillates with betatron tune νβ. The equation
of motion for the vertical coordinate y is, according to Eq. (1.6)

d2y

ds2
+
ω2
β

v2
y =
〈F⊥1 〉
β2E0

=
ieI0Z

⊥
1

βE0C
y . (6.1)

This causes an angular frequency shift of the betatron oscillation

∆ωβ = − ieβc2

2ωβE0

Z⊥1 I0
C

, (6.2)

the imaginary part of which, if positive, is the growth rate. The frequency at which the impedance is eval-
uated is ωp = pω0+ωβ , p being an integer, because the coasting beam contributes pω0 and the transverse
motion ωβ . The reactive part of Z⊥1 (ω) produces a real frequency shift. Since Re Z⊥1 (ω) ? 0 when ω ? 0, the
resistive part causes instability for negative frequency. Therefore only coasting-beam modes with p < −νβ
can be unstable, where νβ = ωβ/ω0 is the betatron tune.

6.1 SACHERER INTEGRAL EQUATION

For bunched beam, longitudinal motion has to be included. Just as for synchrotron oscillations, it is
more convenient to change from (y, py) to the circular coordinates (rβ, θ) in the transverse betatron phase
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space. Following Eq. (5.1), we have {
y = rβ cos θ
py = rβ sinθ ,

(6.3)

and Eq. (6.1) is transformed into 
dy

ds
= −ωβ

v
py

dpy
ds

=
ωβ
v
y − c

E0ωββ
〈F⊥1 (τ ; s)〉 .

(6.4)

The Hamiltonian for motions in both the longitudinal phase space and transverse phase space can be
written as

H = H‖ +H⊥ , (6.5)

where H‖ is the same Hamiltonian given by Eq. (2.7) describing longitudinal motion while H⊥ is the addi-
tional term coming from the equations of motion in the transverse phase space as given by Eq. (6.4). We
note that the transverse force 〈F⊥1 (τ ; s)〉 in Eq. (6.4) depends on the longitudinal variable τ ; therefore

[H‖, H⊥] 6= 0 . (6.6)

We assume that the perturbation is small and synchro-betatron coupling is avoided. Then

[H‖, H⊥] ≈ 0 . (6.7)

This implies that in the transverse phase space, the azimuthal modes m⊥ = 1, 2, · · · , and the radial modes
k⊥ = 1, 2, · · · are good eigen-modes. In fact, this is very reasonable because at small perturbation, the
transverse azimuthal modes m⊥ correspond to frequencies m⊥ωβ with separation ωβ. Since

ωβ � ω0 � ωs , (6.8)

the possibility for different transverse azimuthals to couple is remote. A direct result of Eq. (6.7) is the
factorization of the bunch distribution Ψ in the combined longitudinal-transverse phase space; i.e.,

Ψ(r, φ; rβ, θ) = ψ(r, φ)f(rβ, θ) , (6.9)

where ψ(r, φ) is the distribution in the longitudinal phase space and f(rβ , θ) the distribution in the transverse
phase space. Now decomposed ψ and f into the unperturbed parts and the perturbed parts:

ψ(r, φ) = ψ0(r) + ψ1(r, φ) ,

f(rβ , θ) = f0(rβ) + f1(rβ, θ) . (6.10)

When substituted into Eq. (6.9), there are four terms. The term ψ1f0 implies only the longitudinal-mode
excitations driven by the longitudinal impedance without any transverse excitations. This is what we have
discussed in Section 5 and we do not want to include it again in the present discussion. The term ψ0f1

describes the transverse excitations driven by the transverse impedance only. This term will be included in
the ψ1f1 term if we retain the azimuthal m = 0 longitudinal mode. For this reason, the bunch distribution
Ψ in the combined longitudinal-transverse phase space contains only two terms

Ψ(r, φ; rβ, θ) = ψ0(r)f0(rβ) + ψ1(r, φ)f1(rβ , θ)e−iΩs/v , (6.11)
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where we have separated out the collective angular frequency from ψ1f1.

In the circular coordinates, the linearized Vlasov equation becomes[
−iΩ

v
f1ψ1 +

ωs
v
f1
∂ψ1

∂φ
+
ωβ
v
ψ1
∂f1

∂θ

]
e−iΩs/v − ψ0

df0

drβ
sinθ

c

E0ωββ
〈F⊥1 (τ ; s)〉 = 0 . (6.12)

It is worth pointing out that since the transverse wake force 〈F⊥1 (τ ; s)〉 is a function of the longitudinal
coordinate τ , it should also contribute to the second equation of Eq. (5.2) although the longitudinal wake force
has been neglected here. It is, however, legitimate to drop this contribution if synchro-betatron resonance is
avoided and the transverse beam size has not grown too large. See Exercise 6.4.

The next approximation is to consider only the rigid dipole mode in the transverse phase space; i.e., the
bunch is displaced by an infinitesimal amount D from the center of the transverse phase space and executes
betatron oscillations by revolving at frequency ωβ/(2π). Then we must have

f1(rβ, θ) = −Df ′0(rβ)eiθ . (6.13)

Equation. (6.12) then becomes[
i(Ω− ωβ)ψ1 − ωs

∂ψ1

∂φ

]
De−iΩs/v +

ic2

2E0ωβ
ψ0〈F⊥1 (τ ; s)〉 = 0 , (6.14)

where we have dropped the e−iθ component of sin θ because that corresponds to rotation in the transverse
phase space with frequency −ωβ/(2π) which is very far from ωβ/(2π) provided that the frequency shifts due
to the wake force is small.

The transverse wake force on a beam particle in the n-th bunch at a time advance τ is, similar to the
longitudinal counterpart in Eq. (5.9),

〈F⊥1n(τ ; s)〉 =
e2D

C

∞∑
k=−∞

M−1∑
`=0

∫ ∞
−∞
dτ ′ρ`[τ ′; s− kC − (s`−sn)− v(τ ′−τ)]W1[kC + (s`−sn) + v(τ ′−τ)] . (6.15)

We assume M identical bunches equally spaced. For the µ-th coupled mode, we substitute in the above
expression the perturbed density of the n-th bunch ρ1n(τ)e−iΩs/v including the phase lead as given by
Eq. (5.10). Now the derivation is exactly similar to the longitudinal counter part and we obtain

〈F⊥1nµ(τ ; s)〉 =
ie2MDω0β

C
e−iΩs/v

∞∑
q=−∞

ρ̃1n(ωq)Z⊥1 (ωq)eiωqτ , (6.16)

where ωq = (qM+µ)ω0 + ωβ + Ω. We next substitute the result into the linearized Vlasov equation and
expand ψ1 into azimuthals according to ψ1(r, φ) =

∑
m αmRm(r)eimφ. We finally obtain Sacherer integral

equation for transverse instability

(Ω−ωβ−mωs)αmRm(r)=− iπe
2MNc

E0ωβT 2
0

g0

∑
m′

im−m
′
αm′

∫
r′dr′Rm′(r′)

∑
q

Z⊥1 (ωq)Jm′(ωqr′)Jm(ωqr) , (6.17)

where the unperturbed distribution g0(r) defined in Eq. (5.26) has been used instead of ψ0(r). Notice that
all transverse distributions are not present in the equation and what we have are longitudinal distributions.
This is not unexpected because we have retained only one transverse mode of motion, namely the rigid
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dipole mode, in the transverse phase space. Therefore the Sacherer integral equation for transverse insta-
bility is almost the same as the one for longitudinal instability. There are only two differences. First, the
unperturbed longitudinal distribution g0(r) appears in the former but r−1dg0(r)/dr appears in the latter.
Second, although the m=0 mode does not occurs in the longitudinal equation because of violation of energy
conservation, however, it is a valid azimuthal mode in the transverse equation because it describes rigid
betatron oscillation.

6.2 SOLUTION OF SACHERER INTEGRAL EQUATIONS

Consider first the transverse integral equation, whereW (r) = g0(r) is considered to be a weight function.
Find a complete set of orthonormal functions gmk(r) (k = 1, 2, · · · ) such that∫

W (r)gmk(r)gmk′(r)rdr = δkk′ . (6.18)

On both sides of the integral equation, do the expansion

αmRm(r)eimφ =
∑
k

amkW (r)gmk(r)eimφ . (6.19)

Multiply on both sides by W (r)gmk(r) and integrate over rdr. We obtain from Eq. (6.17),

(Ω−ωβ−mωs)amk = − iπe
2MNc

E0ωβT
2
0

∑
m′k′

am′k′
∑
q

Z⊥1 (ωq)λ̃∗mk(ωq)λ̃m′k′(ωq) , (6.20)

where we have defined
λ̃mk(ω) =

∫
i−mW (r)Jm(ωr)gmk(r)rdr . (6.21)

The λ̃mk(ω) is the Fourier transform of the eigen-mode λmk(τ), which can be shown to be in fact a linear
density. We start with the Fourier transform of the linear density of the mk-th mode

ρ̃(mk)(ω) =
1

2π

∫
dτρ(mk)(τ)e−iωτ =

1
2π

∫
dτd∆Eψ(mk)(τ,∆E)e−iωτ . (6.22)

Now substitute the mk-th mode in Eq. (6.19) for ψ(mk) and obtain

ρ̃(mk)(ω) =
ωsβ

2E0

2πη

∫
rdrdφW (r)gmk(r)eimφ−iωτ . (6.23)

The integration over φ can be performed to yield a Bessel function. Finally using the definition of λ̃mk(ω)
given in Eq. (6.21), we arrive at

ρ̃(mk)(ω) =
ωsβ

2E0

η

∫
rdrW (r)gmk(r)i−mJm(ωr) =

ωsβ
2E0

η
λ̃mk(ω) . (6.24)

Taking the Fourier transform, we therefore obtain

ρ(mk)(τ) =
ωsβ

2E0

η
λmk(τ) . (6.25)

Notice that λ̃mk(ω) is dimensionless; therefore it must be a function of ωτ
L

where τ
L

is the total bunch
length. The sum over the power spectrum should give us∑

q

|λ̃mk(ω)|2 ≈
∫

dω

Mω0
|λ̃mk(ω)|2 ∼ 1

Mω0τL
. (6.26)
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For this reason, Eq. (6.20) can roughly be transformed into

(Ω−ωβ−mωs)amk = − i

1+m
eβc2

2ωβE0

Ib
L

∑
m′k′

am′k′

∑
qZ
⊥
1 (ωq)λ̃∗mk(ωq)λm′k′(ωq)∑
q λ̃
∗
mk(ωq)λmk(ωq)

, (6.27)

which is especially useful if we include only one mode of excitation. For example, the lowest radial mode
k = 1 is usually the most prominent one to be excited and the different azimuthal modes do not mix when
the perturbation is small.

This expression is very similar to the coasting-beam formula of Eq. (6.2). Besides the averaging over the
power spectra, the coasting beam current per unit length I0/C is replaced by the average single bunch current
Ib divided by the total bunch length L in meters. The factor (1+m)−1 in front says that higher-order modes
are harder to excite, and is introduced under some assumption of the unperturbed distribution in phase space
[15]. It is easy to understand why the power spectrum hmk(ω) = |λ̃mk(ω)|2 enters because Z⊥1 (ω)λ̃mk(ω)
gives the deflecting field, which must be integrated over the bunch spectrum to get the total force. Written
in the form of Eq. (6.27), there is no need for λ̃mk(ω) or λmk(τ) to have any special normalization.

The Sacherer longitudinal integral equation (5.25) can be solved in exactly the same way by identifying
the weight function as

W (r) = −1
r

dg0(r)
dr

, (6.28)

where the negative sign is included because dg0(r)/dr < 0. The result is

(Ω −mωs)amk =
i2πe2MNmη

β2E0T 2
0ωs

∑
m′k′

am′k′
∑
q

Z
‖
0 (ωq)
ωq

λ̃∗mk(ωq)λ̃m′k′(ωq) , (6.29)

where λ̃mk(ωq) is again given by Eq. (6.21), but with the weight function replaced by Eq. (6.28). However,
these λ̃mk(ωq) have the dimension of of (time)−1 because the weight function is different. Dimensional
analysis gives ∑

q

|λ̃mk(ω)|2 ≈
∫

dω

Mω0
|λ̃mk(ω)|2 ∼ 1

Mω0τ3
L

. (6.30)

Equation (6.29) becomes approximately

(Ω−mωs)amk =
im

1+m
4π2eIbη

3β2E0ωsτ3
L

∑
m′k′

am′k′

∑
q

Z
‖
0 (ωq)
ωq

λ̃m′k′(ωq)λ̃∗mk(ωq)∑
q λ̃
∗
mk(ωq)λ̃mk(ωq)

, (6.31)

where the extra factor in front is a result of the assumption of some particular unperturbed phase-space
distribution [15].

Some comments are necessary. From Eq. (6.18), it appears that the orthonormal functions gmk(r)
depends on the weight function W (r) only and is independent of the azimuthal m. As a result, gmk(r) will
not be uniquely defined. In fact, this is not true. If we look into either the Sacherer’s longitudinal integral
equation (5.27) or the transverse integral equation (6.17) for one single azimuthal, it is easy to see that

Rm(r) ∝W (r)Jm(ωqr) . (6.32)

Therefore, for small r, we must have the behavior

Rm(r) ∼ rm lim
r→0

W (r) . (6.33)
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Taking the parabolic distribution in the longitudinal case as an example, limr→0 W (r) is a constant implying
that Rm(r) ∼ rm. From Eq. (6.19), since gmk(r) is the expansion of Rm(r), the small-r behavior of gmk(r)
will be constrained. This makes the set of orthonormal functions gmk(r) dependent on the azimuthal m and
become, in fact, unique.

6.3 SACHERER SINUSOIDAL MODES

Assuming the perturbation is small so that only a single azimuthal mode will contribute, we learn from
the Sacherer integral equation (6.17) that the perturbed excitation is

Rm(r)eimφ ∝W (r)Jm(ωrr)eimφ . (6.34)

For a bunch of half length τ̂ = 1
2
τ
L

, Rm(τ̂) = 0. So it is reasonable to write the k-th radial mode corresponding
to azimuthal m as

Rmk(r)eimφ ∝W (r)Jm
(
xmk

r

τ̂

)
eimφ , (6.35)

where xmk is the k-th zero of the Bessel function Jm. Sacherer [17] discovered that, assuming a uniform or
water-bag unperturbed distribution; i.e., W (r) is constant for r < τ̂ , the projection of Rmk(r)eimφ onto the
τ axis

ρ(mk)(τ) ∝
∫
W (r)Jm

(
xmk

r

τ̂

)
eimφd∆E (6.36)

is approximately sinusoidal. In fact, head-tail excitations that are sinusoidal-like had been observed in the
CERN PS booster. For this reason, instead of solving the integral equation, Sacherer approximated ρ(mk)(τ)
by a linear combination of sinusoidal functions, and these modes are called sinusoidal modes. He introduced
a set of orthonormal functions

λm(τ) ∝


cos(m+1)π

τ

τL
m = 0, 2, · · · ,

sin(m+1)π
τ

τL
m = 1, 3, · · · .

(6.37)

Note that λm(τ) has exactly m nodes along the bunch not including the two ends. If we restrict ourselves to
the most prominent lowest radial mode (k = 1), these λm(τ)’s are just the approximates to ρ(m1)(τ). From
now on, the radial mode index k will be dropped.

The power spectrum of the modes in Eq. (6.37) is proportional to

hm(ω) =
4(m+1)2

π2

1 + (−1)m cos πy
[y2 − (m+1)2]2

(6.38)

where y = ωτL/π and τL = L/v is the total length of the bunch in time. They are plotted in Fig. 12. The
normalization of hm(ω) in Eq. (6.38) has been chosen in such a way that, when the smooth approximation
is applied to the summation over k, we have

B
+∞∑
k=−∞

hm(ω) ≈ B

Mω0

∫ +∞

−∞
hm(ω)dω = 1 . (6.39)

Here B = Mω0τL/(2π) is the bunching factor for M identical equally-spaced bunches, or the ratio of full
bunch length to bunch separation.
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Figure 12: Power spectra hm(ω) for modes m = 0 to 3 with zero chromaticity.

For distribution g0(r) ∝ (τ̂2−r2)−1/2 in the longitudinal phase space so that the linear density becomes
constant, the spectral excitations of the lowest radial mode λm(τ) are the Legendre polynomials, the Fourier
transform λ̃m(ω) are the spherical Bessel functions jm, and the power spectra hm ∝ |jm|2. We called these
the Legendre modes. For a bi-Gaussian distribution in the longitudinal phase space, λm(τ) are the Hermite
polynomials and λ̃m(ω) are ωm multiplied by a Gaussian. We call these the Hermite modes.

For the longitudinal integral equation, we have the same modes if we have the same weight function.
For the longitudinal case, the weight function is W (r) = g′0(r)/r instead. Therefore the sinusoidal modes
correspond to g0(r) ∝ (τ̂2 − r2) or linear density ρ(τ) ∝ (τ̂2 − τ2)3/2. The Legendre modes correspond to
g0(r) ∝ (τ̂2 − r2)1/2 or parabolic linear density ρ(τ) ∝ (τ̂2 − τ2). The Hermite modes correspond to the
same bi-Gaussian distribution as in the transverse situation.

Sometimes the growth rates computed are rather sensitive to the longitudinal bunch distribution as-
sumed. Therefore, results using the sinusoidal modes are estimates only.

6.4 CHROMATICITY FREQUENCY SHIFT

The betatron tune νβ of a beam particle depends on its momentum offset δ through the chromaticity
ξ, which is a property of the lattice of the accelerator and is defined as†

∆νβ = ξδ , (6.40)

Because the beam particle makes synchrotron oscillation, the betatron phase is continuously slipping. We
would like to compute the phase slip for a particle that has a time advance τ relative to the synchronous
particle.
†Sometimes, especially in Europe, the chromaticity ξ is also defined by ∆νβ = ξνβδ.
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Figure 13: Positive chromaticity above transition shifts the all modes of excitation towards
the positive frequency side by ωξ. Mode m = 0 becomes stable, but mode m = 1 may be
unstable because it samples more negative ReZ⊥1 than positive Re Z⊥1 .

The momentum offset in Eq. (6.40) can be eliminated using the equation of motion of the phase

∆τ = −ηT0δ , (6.41)

where η is the slip factor and ∆τ is the change in time advance of the particle in a turn. The phase lag in a
turn is then ∫

2π∆νβ = −2π
ξ

η

∫
∆τ
T0

= −ξω0

η
τ . (6.42)

This means that the phase lag increases linearly along the bunch and is independent of the momentum offset.
For a bunch of half length τ̂ , the tail of the bunch, τ = −τ̂ , lags the head of the bunch, τ = +τ̂ , by the
phase 2τ̂ωξ, where

ωξ =
ξω0

η
(6.43)

is called the betatron angular frequency shift due to chromaticity. For this reason, ωξ should be subtracted
from ωp in the argument of the power spectrum in Eqs. (6.20) and (6.27).

For positive chromaticity above transition, ωξ > 0. The modes of excitation in Fig. 12 are therefore
shifted to the right by the angular frequency ωξ. As shown in Fig. 13, mode m = 0 sees more impedance in
positive frequency than negative frequency and is therefore stable. However, it is possible that mode m = 1,
as in Fig. 13, samples more the highly negativeReZ⊥1 at negative frequencies than positiveRe Z⊥1 at positive
frequencies and becomes unstable.

EXERCISES

6.1. Fill in all the steps in the derivation of Sacherer integral equation for transverse instabilities.

6.2. Derive the power spectra of the sinusoidal modes of excitation in Eq. (6.37), and show that they are
given by Eq. (6.38) when properly normalized according to Eq. (6.39).
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6.3. If the transverse impedance is sufficiently smooth, it can be removed from the summation in Eq. (6.27).
Show that the growth rate for the m = 0 mode becomes

1
τ0

= − eIbc

2ωβE0τL
Re Z⊥1 (ωξ) . (6.44)

The transverse impedance of the CERN PS had been measured in this way by recording the growth
rates of a bunch at different chromaticities. The CERN PS had a mean radius of 100 m and could
store proton bunches from 1 to 26 GeV with a transition gamma of γt = 6. The bunch had a spectral
spread of ∼ ±100 MHz, implying that the each measurement of the impedance was averaged over an
interval of ∼ 200 MHz. If the impedance had to be measured up to ∼ 2 GHz and the sextupoles in
the PS could attain chromaticities in the range of ±10, at what proton energy should this experiment
be carried out?

6.4. Redefine the longitudinal coordinates in Eq. (5.1) by X = xv and PX = pxv so that X carries the
dimension of length.

(a) Show that, for the equations of motion (5.2) in the longitudinal phase space and (6.4) in the
transverse phase space, the Hamiltonian is

H = −ωs
2v

(X2 +P 2
X

)− ωβ
2v

(y2 + p2
y) +

vη

E0ωsβ2

∫ X

0

dX′〈F ‖0 (X′/v; s)〉+ cy

E0ωββ2
〈F⊥1 (X/v; s)〉 . (6.45)

(b) Show that the second equation of motion in Eq. (5.2) needs to be modified to

dpx
ds

=
ωs
v
x− η

E0ωsβ2
〈F ‖0 (x; s)〉 − y

E0ωββ3v

∂

∂x
〈F⊥1 (x; s)〉 , (6.46)

where the last term is the synchro-betatron coupling term which we dropped in our discussion.

7 TRANSVERSE COUPLED-BUNCH INSTABILITIES

7.1 RESISTIVE WALL

If there are M identical equally spaced bunches in the ring, there are µ = 0, · · · , M−1 transverse
coupled modes when the centers-of-mass of one bunch leads its predecessor by the betatron phase of 2πµ/M .
The betatron tune shift for the µ-th coupled-bunch mode is exactly the same as the formula in Eq. (6.27)
except for the replacement of ωp by ωq = (qM+µ)ω0 + ωβ +mωs; i.e.,

∆ωmµ = − i

1+m
eMIbc

4πνβE0

∑
q Z
⊥
1 (ωq)hm(ωq−χ/τL )

B
∑
q hm(ωq−χ/τL )

, (7.1)

where the bunching factor B = ML/C has been used and χ = ωξτL is the chromaticity phase shift across
the bunch.

A most serious transverse coupled-bunch instability that occurs in nearly all storage rings is the one
driven by the resistive wall. Since Re Z⊥1 ∝ ω−1/2 and is positive (negative) when ω is positive (nega-
tive), a small negative frequency betatron line, which acts like a narrow resonance, can cause coupled-
bunch instability. Take, for example, the Tevatron in the fixed target mode, where there are M = 1113
equally spaced bunches. The betatron tune is νβ = 19.6. The lowest negative betatron frequency line is at
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Figure 14: The −0.4ω0 betatron line in the Tevatron dominates over all other betatron lines
for µ = 1093 mode coupled-bunch instability driven by the resistive wall impedance.

(qM+µ)ω0 + ωβ = −0.4ω0, for mode µ = 1093 and q = −1. The closet damped betatron line (q = 0) is
at (1113−0.4)ω0, but ReZ⊥1 is only −

√
0.4/1112.6 the value at −0.4ω0. The next anti-damped betatron

line (q = −2) is at −1113.4ω0, with ReZ⊥1 equal to
√

0.4/1113.4 the value at −0.4ω0. This is illustrated in
Fig. 14. Thus it is only the −0.4ω0 betatron line that dominates. From Eq. (7.1), the growth rate for this
mode can therefore be simplified to

1
τmµ

≈ − 1
1+m

eMIbc

4πνβE0
Re Z⊥1 (ωq)F ′m(ωqτL − χ) , (7.2)

where χ = ωξτL and the form factor is

F ′m(ωτL) =
2πhm(ω)

τL

∫ ∞
−∞

hm(ω)dω

, (7.3)

and is plotted in Fig. 15. For zero chromaticity, only the m = 0 mode can be unstable because the power
spectra for all the m 6= 0 modes are nearly zero near zero frequency. Since the perturbing betatron line is
at extremely low frequency, we can evaluate the form factor at zero frequency. For the sinusoidal modes,
we get F ′(0) = 8/π2 = 0.811. On method to make this mode less unstable or even stable is by introducing
positive chromaticity when the machine is above transition. For the Tevatron, η = 0.0028, total bunch
length τL = 5 ns, revolution frequency f0 = 47.7 kHz, a chromaticity of ξ = +10 will shift the spectra by
the amount ωξτL = 2πf0ξτL/η = 5.4. The form factor and thus the growth rate is reduced by more than 4
times. However, from Figs. 12 and 13, we see that the spectra are shifted by ωξτL/π = 1.7 and the m = 1
mode becomes unstable. Another method for damping is to introduce a betatron angular frequency spread
using octapoles, with the spread larger than the growth rate. A third method is to employ a damper. Since
this growth is at a very low frequency, we only need a damper with a very narrow bandwidth. Usually the
adjacent modes µ = 1092, 1091, · · · will also be unstable at the −1.4ω0, −2.4ω0, · · · betatron line; but the
growth rates will be smaller.
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Figure 15: Plot of form factor F ′m(ωτ
L
−χ) for modes m = 0 to 5. With the normalization

in Eq. (6.39), these are exactly the power spectra hm.

7.2 NARROW RESONANCES

The narrow higher-order transverse resonant modes of the rf cavities will also drive transverse coupled-
bunch instabilities. The growths rate are described by the general growth formula of Eq. (7.1). When the
resonance is narrow enough, only the betatron line closest to the resonant frequency −ωr/(2π) contributes
in the summation. The growth rate is therefore given by Eq. (7.2). Similar to the situation of longitudinal
coupled-bunch instabilities, mode µ = 0 and mode µ = M/2 if M is even receive contributions from both
the positive-frequency side and negative-frequency side. In the language of only positive frequencies, there
are the upper and lower betatron side-bands flanking each revolution harmonic line. The lower side-band
originates from negative frequency and is therefore anti-damped. For these two modes, both the upper and
lower side-bands correspond to the same coupled-bunch mode. If the resonant frequency of the resonance
leans more towards the lower side band, there will be a growth. If the resonant frequency leans more
towards the upper side band, there will be damping. This is the Robinson’s stability analog in the transverse
phase plane. There is one important difference between transverse coupled-bunch instabilities driven by the
resistive-wall impedance and by the higher-order resonant modes. The former is at very low frequency and
therefore the form factor F1 is close to 1 when the chromaticity is zero. The latter, however, is at the high
frequency of the resonances. The form factor usually assumes a much smaller value and we sometimes refer
this to “damping” from the spread of the bunch.

EXERCISES

7.1. For the example of resistive-wall driven coupled-bunch instability of the Tevatron at the fixed target
mode, try to sum up the contribution for all frequencies for the µ = 1093 mode and compare the result
of taking only the lowest frequency line.
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7.2. For the same example in Exercise 7.1, compare the growth rates of mode µ = 1092, 1091, · · · , with
mode 1093. How many modes do we need to include so that the growth rate drops to below 1/4 of
that of mode 1093?

7.3. For a narrow resonance that has a total width larger than 2[νβ]ω0 where [νβ] is the residual betatron
tune and the bunch power spectrum is much wider than the revolution frequency, show that the growth
rate is given by

1
τmµ

≈ eMIbc

4πνβE0

hm(ωr−χ/τL )
B
∑
q′ hm(ωq′−χ/τL )

×

×{Re Z⊥1 [(q1M − µ− νβ)ω0 −mωs]−Re Z⊥1 [(q2M + µ+ νβ)ω0 +mωs]} , (7.4)

where q1 and q2 are some positive integer so that

(q1M − µ − νβ)ω0 ≈ ωr ,
(q2M + µ + νβ)ω0 ≈ ωr . (7.5)

Such q1 and q2 are possible only when µ = 0 or µ = M/2 if M is even. Therefore whether the coupled-
bunch mode is stable or unstable depends on whether the resonance is leaning more towards the upper
betatron side-band or the lower betatron side-band.

8 HEAD-TAIL INSTABILITIES

Let us now consider the short-range field of the transverse impedance; i.e., Z⊥1 (ω) when ω is large.
This is equivalent to replacing the discrete line spectrum by a continuous spectrum. Since ReZ⊥(ω) is
antisymmetric, the summation in Eq. (6.27) or Eq. (7.1) when transformed into an integration will vanish
identically at zero chromaticity. There can only be instability when the chromaticity is nonzero. The growth
rate for the m-th azimuthal mode is therefore

1
τm

= − 1
1+m

πecIb
E0ωβω2

0τ
2
L

∫ ∞
−∞

dω Re Z⊥1 (ω)hm(ω − ωξ) . (8.1)

Note that the factor of M , the number of bunches, in the numerator and denominator cancel. This is to
be expected because the growth mechanism is driven by the short-range wake field and the instability is
therefore a single-bunch effect. This explains why the growth rate τ−1

m does not contain the the subscript µ
describing phase relationship of consecutive bunches.

Let us demonstrate this by using only the resistive wall impedance. We substitute the expression of
the resistive wall impedance of Eq. (1.20) into Eq. (8.1). The result of the integration over ω is [16]

1
τm

= − 1
1+m

eIbc

4νβE

(
2

ω0τL

)1/2 ∣∣Z⊥1 (ω0)
∣∣Fm(χ) , (8.2)

where
∣∣Z⊥1 (ω0)

∣∣ is the magnitude of the resistive wall impedance at the revolution frequency. The form
factor is given by

Fm(χ) =

√
2
π

∫ ∞
0

dy
√
y

[hm(y−yξ)− hm(y+yξ)] , (8.3)
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Figure 16: Form factor Fm(χ) for head-tail instability for modes m = 0 to 5.

where hm are power spectra of the m-th excitation mode in Eq. (6.37) written as functions of y = ωτ
L
/π and

yξ = χ/π = ξω0τL/(πη). The first term in the integrand comes from contributions by positive frequencies
while the second term by negative frequencies. The form factors for m = 0 to 5 are plotted in Fig. 16.

This single-bunch instability will occur in nearly all machines. The m = 0 mode is the rigid-bunch
mode when the whole bunch oscillates transversely as a rigid unit. For the m = 1 mode, the head of the
bunch moves transversely in one direction while the tail moves transversely in the opposite direction with
the center-of-mass stationary, and is called the dipole head-tail mode. This is the head-tail instability first
analyzed by Pellegrini and Sands [18, 19].

For small chromaticity ξ . 4, χ . 2.3 the integrand in Eq. (8.3) can be expanded and the growth rate
becomes proportional to chromaticity. The form factor has been computed listed in Table II, where negative
sign implies damping. We see from Table II that mode m= 0 is stable for positive chromaticity. This is
expected because the excitation spectrum for this mode has been pushed towards the positive-frequency
side. All other modes (m>0) should be unstable because their spectra see relatively more negative ReZ⊥1 .
Looking into the form factors in Fig. 16, however, the growth rate for m=4 is tiny and mode m=2 is even
stable. This can be clarified by looking closely into the excitation spectra in Fig. 12. We find that while
mode m = 0 has a large maximum at zero frequency, all the other higher even m modes also have small
maxima at zero frequency. As these even m spectra are pushed to the right, these small central maxima see
more impedance from positive frequency than negative frequency. Since these small central maxima are near
zero frequency where | ReZ⊥1 | is large, their effect may cancel out the opposite effect from the larger maxima
which interact with the impedance at much higher frequency where | ReZ⊥1 | is smaller. This anomalous
effect does not exist in the Legendre modes or the Hermite modes, because the corresponding power spectra
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Table II: Linearized form factor of transverse head-
tail modes driven by the resistive wall impedance
when χ . 2.3.

Mode Form Factor
m Fm
0 −0.1495χ
1 +0.0600χ
2 −0.0053χ
3 +0.0191χ
4 +0.0003χ
5 +0.0098χ

vanish at zero frequency when m > 0.

Although the head-tail instabilities can be damped by the incoherent spread in betatron frequency, it is
advisable to run the machine at a negative chromaticity above transition. In this case, all the higher modes
with m 6= 0 will be stable, and the unstable m = 0 mode can be damped with a damper.

The head-tail instability comes about because of nonzero chromaticity or the betatron tune is a function
of energy spread. There is also such an analog in the longitudinal phase space, where the slip factor η is
energy-spread dependent. The longitudinal beam distribution then picks up a head-tail phase and instability
may arise [21]. In fact, longitudinal head-tail instability had been observed at the CERN SPS [20] and it
was also seen at the Fermilab Tevatron.

EXERCISES

8.1. The degrees of freedom of a system are coupled internally. Some degrees of freedom continue to gain
energy and grow while some lose energy and are damped. When the system is not getting energy from
outside, the sum of the damping or antidamping rates of all degrees of freedom must add up to zero. If
the head-tail stability or instability for all azimuthal modes do not draw energy from outside, energy
must be conserved, or

∞∑
m=0

1
τm

= 0 , (8.4)

where τ−1
m is given by Eq. (8.1), independent of chromaticity and the detail of the transverse impedance.

Show that Eq. (8.4) is only satisfied if the factor (1+m)−1 in Eq. (8.1) is removed. We may conclude
that either the factor (1+m)−1 should not be present in Sacherer formula or this is not an internal
system.

Hint: Show that
∑
m |hm(ω)|2 is a constant independent of ω by performing the summation numerically.

This follows from the fact that the modes of excitation λm(τ) form a complete set. Then the integration
over ReZ⊥1 (ω0) gives zero.

8.2. In an isochronous ring or a linac, the particle at the head of the bunch will not exchange position with
the particle at the tail. Thus the particle at the tail suffers from the wake of the head all the time.
We can consider a macroparticle model with only two macroparticles each carries charge eN/2 and
separated by a distance ẑ longitudinally. The head particle executes a free betatron oscillation

y1(s) = ŷ cos kβs , (8.5)
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while the tail sees a deflecting wake force 〈F⊥1 〉 = e2NW1(ẑ)y1(s)/(2`) and its transverse motion is
determined by

y′′2 + k2
βy2 = −e

2NW1(ẑ)
2E0`

, (8.6)

where kβ = ωβ/v is the betatron wave number, ` is the length of the vacuum chamber that supplies
the wake. If one prefers, one can define W1 as the wake force integrated over one rf-cavity period; then
` will be the length of the cavity period. Show that the solution of Eq. (8.6) is

y2(s) = ŷ

[
cos kβs−

e2NW1(ẑ)
4kβE0`

s sin kβs
]
. (8.7)

The second term is the resonant response to the wake force and grows linearly. Show that the total
growth in transverse amplitude along a length `0 of the linac relative to the head particle is

Υ = −e
2NW1(ẑ)`0

4kβE0`
. (8.8)

The above mechanism is called beam breakup.

9 MODE-COUPLING

As the beam intensity increases, the shift of each azimuthal mode becomes so big that two adjacent
modes overlap each other. The azimuthal mode number is no longer a good eigen-number, and we can no
longer represent the perturbation distribution ψ1 as a single azimuthal mode; instead it should be a linear
combination of all azimuthal modes. This phenomenon has been referred to as “mode-coupling,” “strong
head-tail,” and “transverse or longitudinal turbulence.”

9.1 TRANSVERSE

Let us first consider transverse instability driven by a broad-band impedance. This implies a single
bunch mechanism. Also we set the chromaticity to zero. For the m-th azimuthal mode and k-th radial mode,
Eq. (6.27) or (7.1) becomes

(Ω−mωs)δmm′ δkk′ = Mmm′kk′ (9.1)

where, with the aid of Eq. (6.27), the matrix M is defined as

Mmm′kk′ = − ieIbc

2ωβE0τL

∫
dωZ⊥1 (ω)λ̃m′k′(ω)λ̃∗mk(ω)∫

dωλ̃mk(ω)λ̃∗mk(ω)
. (9.2)

The summations have been converted to integrations because the impedance is so broad-band that there is
no need to distinguish the individual betatron lines. A further simplification is to keep only the first most
easily excited radial modes. Then, the problem becomes coupling in the azimuthal modes.

Since Re Z⊥1 (ω) is odd in ω and ImZ⊥1 (ω) is even in ω, only ImZ⊥1 (ω) will contribute to the diagonal
terms of the matrixM giving only real frequency shifts which will not lead to instability. As the beam current
becomes larger, two modes will collide and merge together, resulting in two complex eigen-frequencies, one is
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η1 =
πeIbcW1

4E0ωβωs

Figure 17: Transverse mode frequencies (Ω−ωβ)/ωs versus the current intensity parameter
η1 for an air-bag bunch distribution perturbed by a constant wake potential W1. The
instability occurs at η1 ≈ 1.8, when the m = 0 and m = 1 modes collide. The dashed curves
are the imaginary part of the mode frequencies or growth/damping rate for the two colliding
modes.

the complex conjugate of the other, thus introducing instability. Therefore, coupling should originate from
the off-diagonal elements closest to the diagonal. We learn from Eq. (6.37) that the m-th mode of excitation
λ̃m(ω) is even in ω when m is even, and odd in ω when m is odd. Thus, it is ReZ⊥1 (ω) that gives the
coupling.

The eigen-angular-frequencies are solved by

det[(Ω− ωβ −mωs)I −M ] = 0 . (9.3)

As an example, an airbag model is perturbed by the impedance

Z⊥1 (ω) =
W1

ω + iε
, (9.4)

which corresponds to a constant wake function W1. The infinite matrix is truncated and the eigenvalues
solved numerically. The solution is shown in Fig. 17 [6]. This impedance corresponds to a real part that
falls off as frequency increases. The imaginary part is a δ-function at zero frequency, and therefore interacts
with the m = 0 mode only. This explains why all other modes remain almost unshifted with the exception
of m = 0. The downward frequency shift of the m = 0 mode as the beam intensity increases from zero
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is a general behavior for short bunches. The transverse wake force produced by an off-axis beam has the
polarity that deflects the beam further away from the pipe axis. This force acts as a defocusing force for the
rigid beam mode, and therefore the frequency shifts downward. Such a down shift of the betatron frequency
is routinely observed in electron accelerators and serves as an important tool of probing the impedance.
Eventually the m = 0 shifts downwards and meets with the m = −1 mode, thus exciting an instability. The
threshold is at

η1 =
πeIbcW1

4E0ωβωs
≈ 1.8 , (9.5)

and is bunch-length independent. We can also obtain an approximate threshold from Eqs. (9.1) and (9.2)
by equating the frequency shift to ωs, and get

eIbc Z
⊥
1

∣∣
eff

2E0ωβωsτL
≈ 1 , (9.6)

where

Z⊥1
∣∣
eff

=

∫
dωZ⊥1 (ω)hm(ω)∫

dωhm(ω)
(9.7)

is called the effective transverse impedance for mode m. Comparing Eqs. (9.5) and (9.6), we find the two
thresholds are almost the same except for the bunch-length dependency, which we think should be understood
as follows. Since the imaginary part of the impedance in Eq. (9.4) is a δ-function at zero frequency which
interacts only with the m = 0 mode. As the bunch length becomes shorter, the spectrum spreads out wider,
so that the spectrum at zero frequency becomes smaller. In fact, from Eqs. (6.38) and (6.39), it is clear that
Z⊥1
∣∣
eff
∝ τL , thus explaining why η1 in Eq. (9.5) is bunch-length independent.

Now consider the situation when the impedance is a broad-band resonance. For a very short bunch, the
m = 0 mode extends to very high frequencies and will cover part of the high-frequency capacitive part of the
resonance. Thus the effective impedance Z⊥1 |eff

can become small due to the cancellation of the inductive
and capacitive parts. At the same time, the peak of Re Z⊥1 is far from the peak of the m = 1 mode, thus
making the coupling between the m = 0 and m = 1 mode very weak. Since the frequency shift is small and
the coupling is weak, it will take a much higher beam current for the m = 0 mode to meet with the m = 1
mode, thus pushing up the threshold current. For a long bunch, the m = 0 mode has a small frequency
spread. If it stays inside the inductive region where ImZ⊥1 is almost constant, Z⊥1

∣∣
eff

will be almost constant
and the threshold current increase linearly with the bunch length. When the bunch is very long, the m = ±1
and even m = ±2 and m = ±3 modes may stay inside the constant inductive region of the impedance. This
implies that the higher azimuthal modes also interact strongly with the impedance and these mode will have
large shifts so that the threshold can become much smaller. Several collisions may occur around a small
beam-current interval and the bunch can become very unstable suddenly.

The transverse mode-coupling instability was first observed at PETRA and later also at PEP and LEP.
The instability is devastating; as soon as the threshold is reached, the bunch disappears.

9.2 LONGITUDINAL

The azimuthal modes are not good description of the collective motion of the bunch when the beam
current is high enough. Therefore there is also mode-coupling in the longitudinal motion. Similar to the
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transverse coupled problem in Eqs. (9.1) and (9.2), we have here

(Ω−mωs)δmm′ δkk′ = Mmm′kk′ (9.8)

where, with the aid of Eq. (9.9), the matrix M is defined as

Mmm′kk′ =
im

1+m
4π2eIbη

3β2E0ωsτ3
L

∫
dω
Z
‖
0 (ω)
ω

λ̃m′k′(ω)λ̃∗mk(ω)∫
dωλ̃mk(ω)λ̃∗mk(ω)

, (9.9)

where the unperturbed distribution has been assumed to be parabolic. Again here the impedance is broad-
band so that the discrete summations over the synchrotron side-bands have been replaced by integrals. We
have also thrown away all the higher-order radial modes keeping the most easily excited k = 0. Exactly the
same as in the transverse situation, only ImZ

‖
0 (ω)/ω contributes to the diagonal elements of the coupling

matrix and thus to the real frequency shifts of the modes. The coupling of two modes, mostly adjacent, will
give instability, which is determined by ReZ‖0 (ω)/ω in the off-diagonal elements next to the diagonal ones.
All the discussions about bunch-length dependency on threshold in the transverse case apply here also.

A rough estimate of the threshold can be obtained from Eq. (9.9) by equating the frequency shift to
ωs. The threshold is therefore

η2 =
4π2eIbη

3β2E0ω2
sτ

3
L

Z
‖
0

ω

∣∣∣∣∣
eff

≈ 1 , (9.10)

where the effective longitudinal impedance for mode m is defined as

Z
‖
0

ω

∣∣∣∣∣
eff

=

∫
dω
Z
‖
0 (ω)
ω

hm(ω)∫
dωhm(ω)

, (9.11)

For convenience, let us introduce a parameter x = ωτ
L
/π, so that, with the exception of m = 0 which is

not an allowed mode in the longitudinal motion, the m-th mode of excitation peaks at x ≈ m+ 1 and has a
half width of ∆x ≈ 1. Now consider the Fermilab Main Ring with a revolution frequency 47.71 kHz and total
bunch length τL ≈ 2 ns. Assume the impedance to be broad-band centered at xr = 7.5 or fr ∼ 1.88 GHz
and quality factor Q = 1. Numerical diagonalization of the coupling matrix gives frequency shifts as shown
in Fig. 18 [22]. We see the first instability occurs when mode m = 6 couples with mode m = 7, and in the
vicinity of the threshold, there are also couplings between modes m = 4 and 5 and modes m = 8 and 9.
This happens because the resonance centered at xr = 7.5 has a half width ∆xr = xr/(2Q) = 3.75. Thus the
Re Z‖0/ω resonant peak encompasses modes m = 4 to 9, which peak at x = 5 to 10. This is a typical picture
of mode-coupling instability for long bunches. From the figure, the first instability occurs at

ε =
4π2eIbη

3β2E0ω2
sτ

3
L

Rs
ωr
≈ 0.93 . (9.12)

On the other hand, the Keil-Schnell criterion of Eq. (4.20) gives a threshold of

eIbη

β2E0ω2
sτ

3
L

Rs
ωr

=
1

6π
1
F
, (9.13)

where F is the form factor. This is equivalent to

ε =
2π
9

1
F
. (9.14)
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ε =
4π2eIbη

3β2E0ω2
sτ

3
L

Rs
ωr

Figure 18: Coupling of modes m = 6 and 7 in the presence of a resonance at xr = 7.5 and
Q = 1 above transition.

Thus the mode-coupling threshold is very close to the Keil-Schnell threshold. However, mode-coupling
instability is quite different from microwave instability. In the latter, pure reactive impedance can drive
an instability; for example, the negative-mass instability just above transition is driven by the space-charge
force. It can be demonstrated that pure capacitive impedance will only lead to real frequency shifts of the
modes. Although two modes may cross each other, they will not be degenerate to form complex modes.
Thus, there is no instability.

When the bunch is short, the modes of excitation spread out to higher frequencies. Therefore when the
bunch is short enough, the resonant peak of Re Z‖0/ω resonant peak will encompass only modes m = 1 and
2. Thus, we expect these two modes will collide first to give instability. The m = 1 is the dipole mode and is
not shifted at low beam current because the bunch center does not see any reactive impedance. The m = 2
is the quadrupole mode, which is shifted downward above transition. This downshift is a way to measure
the reactive impedance of the ring.

When the beam current is above threshold and instability starts, the energy spread increases and so
does the bunch length. In an electron ring where there is radiation damping, there is no overshooting and the
increase stops when the stability criterion is fulfilled again. The bunch lengthening is therefore determined
by the stability criterion. If the bunch samples the impedance at a frequency range where Z‖0 (ω) ∝ ωa, the
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effective impedance is

Z
‖
0

ω

∣∣∣∣∣
eff

∝

∫
dω ωa−1hm(ω)∫
dω hm(ω)

∝ τ1−a
L

, (9.15)

where use has been made of the fact that the power spectrum hm is a function of the dimensionless quantity
ωτ

L
according to Eq. (6.38) and the result is independent of the functional form of hm. From the threshold

condition in Eq. (9.10), we have
4π2eIbη

3β2E0ω2
sτ

2+a
L

≈ 1 . (9.16)

Thus the bunch length obeys the scaling criterion of

τL ∝ ξ1/(2+a) , (9.17)

where
ξ =

ηIb
ν2
sE0

(9.18)

is the scaling parameter introduced by Chao and Gareyte [12].

Longitudinal mode-coupling is different from transverse mode-coupling. In the latter, the betatron
frequency (m = 0) is shifted downward to meet with the m = −1 mode. The amount of shift is small, since
νs/[νβ]� 1, where [νβ] is the residual betatron tune. Transverse mode-coupling has been measured in many
electron rings and the results agree with theory.

In the longitudinal case, the synchrotron quadrupole frequency (m = 2) has to be shifted downward
to meet with the synchrotron dipole frequency (m = 1) and this shift is a 100% of the synchrotron tune.
At LEP which is above transition, we expect the synchrotron quadrupole mode to shift downward when the
beam current increases from zero. However, it was observed that this mode shifts slightly upward instead.
Since the dipole frequency is not shifted, it is hard to visualized how the two modes will be coupled. Some
argue that the coupling may not be between two azimuthal modes, but instead between two radial modes
that we have discarded in our discussion. But the coupling between two radial modes are generally much
weaker. Some say that the actual coupling of the two modes has never been observed experimentally, and
the scaling law for bunch lengthening may have been the result of some other theories. Anyway, the theory
of longitudinal mode-coupling is far from satisfactory.

EXERCISES

9.1. There is a simple two-particle model to demonstrate transverse mode coupling [6]. Assume the head
and tail particles are always separated by ẑ for one half of a synchrotron period Ts and exchange
position for the other half. Similar to Exercise 8.2, we have during 0 < s/v < Ts/2,

y′′1 + k2
βy1 = 0 ,

y′′2 + k2
βy1 = −e

2NW1(ẑ)
2E0C

y1 . (9.19)

(a) Show that the solution is

ỹ1(s) = ỹ1(0)e−ikβs , (9.20)

ỹ2(s) = ỹ2(0)e−ikβs − ie
2NW1(ẑ)
4E0Ckβ

[
ỹ∗1(0)
kβ

sin(kβs) + ỹ1(0) s e−ikβs
]
, (9.21)
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where

ỹ` = y` + i
y′`
kβ

, ` = 1, 2 . (9.22)

The term with sin(kβs) in Eq. (9.21) can be dropped because ωβTs/2� 1. We can therefore write(
ỹ1

ỹ2

)
s=vTs/2

= e−iωβTs/2
(

1 0
iΥ 1

)(
ỹ1

ỹ1

)
s=0

, (9.23)

where

Υ = −πe
2NW1v

2

4E0Cωβωs
. (9.24)

(b) During Ts/2 < s/v < Ts, show that we have instead

y′′1 + k2
βy1 =

e2NW1(ẑ)
2E0C

y2 ,

y′′2 + k2
βy1 = 0 , (9.25)

so that for one synchrotron period,(
ỹ1

ỹ1

)
s=vTs

= e−iωβTs
(

1 iΥ
0 1

)(
1 0
iΥ 1

)(
ỹ1

ỹ1

)
s=0

. (9.26)

(c) Show that the two eigenvalues are

λ± = e±iφ , sin
φ

2
=

Υ
2
, (9.27)

and stability requires Υ ≤ 2. Compare the result with Eq. (9.5). Note that for a short bunchW1(ẑ) < 0;
thus Υ is positive.

9.2. In the two-particle model in Exercise 9.1, if the beam current is slightly above threshold; i.e.,

Υ = 2 + ε , (9.28)

where ε� 1, compute the complex phase φ of the eigenvalues λ±. The growth rate is then

1
τ

=
Imφ

Ts
=

2
√
ε

Ts
. (9.29)

Show that for an intensity 10% above threshold, the growth time is of the order of the synchrotron
period.

9.3. For longitudinal mode-coupling, the coupling matrix of Eq. (9.9) can be written as, after keeping only
the lowest radial modes,

Mmm′ = εωsAmm′ (9.30)

where ε is given by Eq. (9.12),

Amm′ =
im

1+m

∫
dω
ωrẐ

‖
0 (ω)
ω

λ̃m′(ω)λ̃∗m(ω)∫
dωλ̃m(ω)λ̃∗m(ω)

, (9.31)
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and Ẑ‖0 (ω) has been normalized to the shut impedance Rs.

If the coupling is not too strong, we can truncate the matrix to 2 × 2 for the coupling between two
modes: ∣∣∣∣∣∣∣

Ω
ωs0
−m− εAmm εAmm′

εAm′m
Ω
ωs
−m′ − εAm′m′

∣∣∣∣∣∣∣ = 0 . (9.32)

(a) Show that the collective frequency is given by

Ω = 1
2ωs

[
(νm + νm′)±

√
(νm′ − νm)2 + 4ε2Amm′Am′m

]
, (9.33)

where νk = k + εAkk, k = m or m′.

(b) For two adjacent modes (m′ = m+ 1) that are coupled by a resonant peak, the higher-frequency
mode samples mostly the capacitive part of the resonance while the lower-frequency mode samples the
inductive part. Therefore Amm−Am′m′ > 0. Show that Amm′Am′m = −|Amm′ |2 and the threshold of
instability εth is given by

|εthAmm′ | = 1
2 |εth(Am′m′ −Amm)− 1| . (9.34)

The solution is different depending on whether the bunch energy is above or below transition:

εth =
1

2|Amm′ |+ |Am′m′ −Amm|
above transition,

|εth| =
∣∣∣∣ 1
2|Amm′ | − |Am′m′ −Amm|

∣∣∣∣ below transition. (9.35)

The above shows that the threshold will be higher when the ring is below transition. For this reason,
it is advantageous for the ring to be of imaginary γt [23].

(c) When the impedance is purely reactive, the next-to-diagonal off-diagonal elements are zero. So we
talk about coupling of two modes m and m′ = m+ 2 instead. Show that Amm′Am′m = |Amm′ |2 and
instability cannot occur.
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